دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: آمار ریاضی ویرایش: 4 نویسندگان: Theodore Coladarci. Casey D. Cobb سری: ISBN (شابک) : 1118425219, 9781118425213 ناشر: Wiley سال نشر: 2013 تعداد صفحات: 450 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
کلمات کلیدی مربوط به کتاب مبانی استدلال آماری در آموزش و پرورش: ریاضیات، نظریه احتمالات و آمار ریاضی، آمار ریاضی، آمار ریاضی کاربردی
در صورت تبدیل فایل کتاب Fundamentals of Statistical Reasoning in Education به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی استدلال آماری در آموزش و پرورش نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مبانی استدلال آماری در آموزش و پرورش، ویرایش چهارم متنی است که به طور خاص برای جامعه آموزش و پرورش طراحی شده است. این متن به مربیان دانش آماری و مهارت های لازم در تدریس روزمره در کلاس، در اداره مدارس و در پیگیری های توسعه حرفه ای را می دهد. این بر توسعه مفهومی با یک سبک جذاب و توضیح واضح تأکید دارد.
Fundamentals of Statistical Reasoning in Education, 4th Edition is a text specifically geared towards the education community. This text gives educators the statistical knowledge and skills necessary in everyday classroom teaching, in running schools, and in professional development pursuits. It emphasises conceptual development with an engaging style and clear exposition.
Chapter 1 Introduction 1 1.1 Why Statistics? 1 1.2 Descriptive Statistics 2 1.3 Inferential Statistics 3 1.4 The Role of Statistics in Educational Research 4 1.5 Variables and Their Measurement 5 1.6 Some Tips on Studying Statistics 8 PART 1 DESCRIPTIVE STATISTICS 13 Chapter 2 Frequency Distributions 14 2.1 Why Organize Data? 14 2.2 Frequency Distributions for Quantitative Variables 14 2.3 Grouped Scores 15 2.4 Some Guidelines for Forming Class Intervals 17 2.5 Constructing a Grouped-Data Frequency Distribution 18 2.6 The Relative Frequency Distribution 19 2.7 Exact Limits 21 2.8 The Cumulative Percentage Frequency Distribution 22 2.9 Percentile Ranks 23 2.10 Frequency Distributions for Qualitative Variables 25 2.11 Summary 26 Chapter 3 Graphic Representation 34 3.1 Why Graph Data? 34 3.2 Graphing Qualitative Data: The Bar Chart 34 3.3 Graphing Quantitative Data: The Histogram 35 3.4 Relative Frequency and Proportional Area 39 3.5 Characteristics of Frequency Distributions 41 3.6 The Box Plot 44 3.7 Summary 45 Chapter 4 Central Tendency 52 4.1 The Concept of Central Tendency 52 4.2 The Mode 52 4.3 The Median 53 4.4 The Arithmetic Mean 54 4.5 Central Tendency and Distribution Symmetry 57 4.6 Which Measure of Central Tendency to Use? 59 4.7 Summary 59 Chapter 5 Variability 66 5.1 Central Tendency Is Not Enough: The Importance of Variability 66 5.2 The Range 67 5.3 Variability and Deviations From the Mean 68 5.4 The Variance 69 5.5 The Standard Deviation 70 5.6 The Predominance of the Variance and Standard Deviation 71 5.7 The Standard Deviation and the Normal Distribution 72 5.8 Comparing Means of Two Distributions: The Relevance of Variability 73 5.9 In the Denominator: n Versus n 1 75 5.10 Summary 76 Chapter 6 Normal Distributions and Standard Scores 81 6.1 A Little History: Sir Francis Galton and the Normal Curve 81 6.2 Properties of the Normal Curve 82 6.3 More on the Standard Deviation and the Normal Distribution 82 6.4 z Scores 84 6.5 The Normal Curve Table 87 6.6 Finding Area When the Score Is Known 88 6.7 Reversing the Process: Finding Scores When the Area Is Known 91 6.8 Comparing Scores From Different Distributions 93 6.9 Interpreting Effect Size 94 6.10 Percentile Ranks and the Normal Distribution 96 6.11 Other Standard Scores 97 6.12 Standard Scores Do Not Normalize a Distribution 98 6.13 The Normal Curve and Probability 98 6.14 Summary 99 Chapter 7 Correlation 106 7.1 The Concept of Association 106 7.2 Bivariate Distributions and Scatterplots 106 7.3 The Covariance 111 7.4 The Pearson r 117 7.5 Computation of r: The Calculating Formula 118 7.6 Correlation and Causation 120 7.7 Factors Influencing Pearson r 122 7.8 Judging the Strength of Association: r 2 125 7.9 Other Correlation Coefficients 127 7.10 Summary 127 Chapter 8 Regression and Prediction 134 8.1 Correlation Versus Prediction 134 8.2 Determining the Line of Best Fit 135 8.3 The Regression Equation in Terms of Raw Scores 138 8.4 Interpreting the Raw-Score Slope 141 8.5 The Regression Equation in Terms of z Scores 141 8.6 Some Insights Regarding Correlation and Prediction 142 8.7 Regression and Sums of Squares 145 8.8 Residuals and Unexplained Variation 147 8.9 Measuring the Margin of Prediction Error: The Standard Error of Estimate 148 8.10 Correlation and Causality (Revisited) 152 8.11 Summary 153 PART 2 INFERENTIAL STATISTICS 163 Chapter 9 Probability and Probability Distributions 164 9.1 Statistical Inference: Accounting for Chance in Sample Results 164 9.2 Probability: The Study of Chance 165 9.3 Definition of Probability 166 9.4 Probability Distributions 168 9.5 The OR/addition Rule 169 9.6 The AND/Multiplication Rule 171 9.7 The Normal Curve as a Probability Distribution 172 9.8 So What? Probability Distributions as the Basis for Statistical Inference 174 9.9 Summary 175 Chapter 10 Sampling Distributions 179 10.1 From Coins to Means 179 10.2 Samples and Populations 180 10.3 Statistics and Parameters 181 10.4 Random Sampling Model 181 10.5 Random Sampling in Practice 183 10.6 Sampling Distributions of Means 184 10.7 Characteristics of a Sampling Distribution of Means 185 10.8 Using a Sampling Distribution of Means to Determine Probabilities 188 10.9 The Importance of Sample Size (n) 191 10.10 Generality of the Concept of a Sampling Distribution 193 10.11 Summary 193 Chapter 11 Testing Statistical Hypotheses About When Is Known: The One-Sample z Test 199 11.1 Testing a Hypothesis About : Does Homeschooling Make a Difference? 199 11.2 Dr. Meyer s Problem in a Nutshell 200 11.3 The Statistical Hypotheses: H0 and H1 201 11.4 The Test Statistic z 202 11.5 The Probability of the Test Statistic: The p Value 203 11.6 The Decision Criterion: Level of Significance ( ) 204 11.7 The Level of Significance and Decision Error 207 11.8 The Nature and Role of H0 and H1 209 11.9 Rejection Versus Retention of H0 209 11.10 Statistical Significance Versus Importance 210 11.11 Directional and Nondirectional Alternative Hypotheses 212 11.12 The Substantive Versus the Statistical 214 11.13 Summary 215 Chapter 12 Estimation 222 12.1 Hypothesis Testing Versus Estimation 222 12.2 Point Estimation Versus Interval Estimation 223 12.3 Constructing an Interval Estimate of 224 12.4 Interval Width and Level of Confidence 226 12.5 Interval Width and Sample Size 227 12.6 Interval Estimation and Hypothesis Testing 228 12.7 Advantages of Interval Estimation 230 12.8 Summary 230 Chapter 13 Testing Statistical Hypotheses About When Is Not Known: The One-Sample t Test 235 13.1 Reality: Often Is Unknown 235 13.2 Estimating the Standard Error of the Mean 236 13.3 The Test Statistic t 237 13.4 Degrees of Freedom 238 13.5 The Sampling Distribution of Student s t 239 13.6 An Application of Student s t 242 13.7 Assumption of Population Normality 244 13.8 Levels of Significance Versus p Values 244 13.9 Constructing a Confidence Interval for When Is Not Known 246 13.10 Summary 247 Chapter 14 Comparing the Means of Two Populations: Independent Samples 253 14.1 From One Mu ( ) to Two 253 14.2 Statistical Hypotheses 254 14.3 The Sampling Distribution of Differences Between Means 255 14.4 Estimating X1 X2 257 14.5 The t Test for Two Independent Samples 259 14.6 Testing Hypotheses About Two Independent Means: An Example 260 14.7 Interval Estimation of 1 2 262 14.8 Appraising the Magnitude of a Difference: Measures of Effect Size for X1 X2 264 14.9 How Were Groups Formed? The Role of Randomization 268 14.10 Statistical Inferences and Nonstatistical Generalizations 269 14.11 Summary 270 Chapter 15 Comparing the Means of Dependent Samples 278 15.1 The Meaning of Dependent 278 15.2 Standard Error of the Difference Between Dependent Means 279 15.3 Degrees of Freedom 281 15.4 The t Test for Two Dependent Samples 281 15.5 Testing Hypotheses About Two Dependent Means: An Example 283 15.6 Interval Estimation of D 286 15.7 Summary 287 Chapter 16 Comparing the Means of Three or More Independent Samples: One-Way Analysis of Variance 294 16.1 Comparing More Than Two Groups: Why Not Multiple t Tests? 294 16.2 The Statistical Hypotheses in One-Way ANOVA 295 16.3 The Logic of One-Way ANOVA: An Overview 296 16.4 Alison s Reply to Gregory 299 16.5 Partitioning the Sums of Squares 300 16.6 Within-Groups and Between-Groups Variance Estimates 303 16.7 The F Test 304 16.8 Tukey s HSD Test 306 16.9 Interval Estimation of i j 308 16.10 One-Way ANOVA: Summarizing the Steps 309 16.11 Estimating the Strength of the Treatment Effect: Effect Size ( 2) 311 16.12 ANOVA Assumptions (and Other Considerations) 312 16.13 Summary 313 Chapter 17 Inferences About the Pearson Correlation Coefficient 322 17.1 From to 322 17.2 The Sampling Distribution of r When 0 322 17.3 Testing the Statistical Hypothesis That 0 324 17.4 An Example 324 17.5 In Brief: Student s t Distribution and Regression Slope (b) 326 17.6 Table E 326 17.7 The Role of n in the Statistical Significance of r 328 17.8 Statistical Significance Versus Importance (Again) 329 17.9 Testing Hypotheses Other Than 0 329 17.10 Interval Estimation of 330 17.11 Summary 332 Chapter 18 Making Inferences From Frequency Data 338 18.1 Frequency Data Versus Score Data 338 18.2 A Problem Involving Frequencies: The One-Variable Case 339 18.3 2: A Measure of Discrepancy Between Expected and Observed Frequencies 340 18.4 The Sampling Distribution of 2 341 18.5 Completion of the Voter Survey Problem: The 2 Goodness-of-Fit Test 343 18.6 The 2 Test of a Single Proportion 344 18.7 Interval Estimate of a Single Proportion 345 18.8 When There Are Two Variables: The 2 Test of Independence 347 18.9 Finding Expected Frequencies in the Two-Variable Case 348 18.10 Calculating the Two-Variable 2 350 18.11 The 2 Test of Independence: Summarizing the Steps 351 18.12 The 2 x 2 Contingency Table 352 18.13 Testing a Difference Between Two Proportions 353 18.14 The Independence of Observations 353 18.15 2 and Quantitative Variables 354 18.16 Other Considerations 355 18.17 Summary 355 Chapter 19 Statistical Power (and How to Increase It) 363 19.1 The Power of a Statistical Test 363 19.2 Power and Type II Error 364 19.3 Effect Size (Revisited) 365 19.4 Factors Affecting Power: The Effect Size 366 19.5 Factors Affecting Power: Sample Size 367 19.6 Additional Factors Affecting Power 368 19.7 Significance Versus Importance 369 19.8 Selecting an Appropriate Sample Size 370 19.9 Summary 373 Epilogue A Note on (Almost) Assumption-Free Tests 379 References 380 Appendix A Review of Basic Mathematics 382 A.1 Introduction 382 A.2 Symbols and Their Meaning 382 A.3 Arithmetic Operations Involving Positive and Negative Numbers 383 A.4 Squares and Square Roots 383 A.5 Fractions 384 A.6 Operations Involving Parentheses 385 A.7 Approximate Numbers, Computational Accuracy, and Rounding 386 Appendix B Answers to Selected End-of-Chapter Problems 387 Appendix C Statistical Tables 408 Glossary 421 Index 427 Useful Formulas 433