دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [4 ed.]
نویسندگان: Aldo Vieira da Rosa. Juan Carlos Ordonez
سری:
ISBN (شابک) : 0128160365, 9780128160367
ناشر: Academic Press, A. P, AP
سال نشر: 2021
تعداد صفحات:
زبان: English
فرمت فایل : 7Z (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 Mb
در صورت تبدیل فایل کتاب Fundamentals of Renewable Energy Processes, Fourth Edition (Instructor's Edu Resource 1 of 2, Solution Manual) (Solutions) 4th Ed به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی فرآیندهای انرژی تجدیدپذیر، ویرایش چهارم (منبع آموزشی مربی 1 از 2، راهنمای راه حل) (راه حل ها) ویرایش چهارم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front-Matter_2022_Fundamentals-of-Renewable-Energy-Processes Copyright_2022_Fundamentals-of-Renewable-Energy-Processes Dedication_2022_Fundamentals-of-Renewable-Energy-Processes Contents_2022_Fundamentals-of-Renewable-Energy-Processes Contents Preface_2022_Fundamentals-of-Renewable-Energy-Processes Preface Acknowledgments_2022_Fundamentals-of-Renewable-Energy-Processes Acknowledgments Chapter-1---Introduction_2022_Fundamentals-of-Renewable-Energy-Processes 1 Introduction 1.1 Units and Constants 1.2 Energy and Utility 1.3 Conservation of Energy 1.4 Planetary Energy Balance 1.5 The Energy Utilization Rate 1.6 The Population Growth 1.7 Water Usage 1.8 The Market Penetration Function 1.9 Planetary Energy Resources 1.9.1 Mineral and Fossil Assets 1.10 Energy Utilization 1.11 The Efficiency Question 1.12 The Ecology Question—CO2 Emission and Concentrations 1.12.1 Biological 1.12.2 Mineral 1.12.3 Subterranean 1.12.4 Oceanic 1.13 Other Greenhouse Gases 1.14 Financing 1.15 The Cost of Electricity Problems References Chapter-2---A-Minimum-of-Thermodynamics-and-o_2022_Fundamentals-of-Renewable 2 A Minimum of Thermodynamics and of the Kinetic Theory of Gases 2.1 The Motion of Molecules 2.1.1 Temperature 2.1.2 The Ideal Gas Law 2.1.3 Internal Energy 2.1.4 Specific Heat at Constant Volume 2.1.5 The Pressure-Volume Work 2.1.6 Specific Heat at Constant Pressure 2.1.7 Degrees of Freedom 2.2 Thermodynamic System, State, Properties, and Process 2.3 The First Law of Thermodynamics 2.4 Manipulating Confined Gases (Closed Systems) 2.4.1 Adiabatic Processes 2.4.1.1 Abrupt Compression 2.4.1.2 Gradual Compression 2.4.1.3 p-V Diagrams 2.4.1.4 Polytropic Law 2.4.1.5 Work Done Under Adiabatic Expansion (Closed System) 2.4.2 Isothermal Processes 2.4.2.1 Functions of State 2.5 Manipulating Flowing Gases (Open Systems) 2.5.1 Enthalpy 2.5.2 Turbines 2.6 Entropy and Irreversible Processes 2.6.1 Isentropic Processes 2.6.2 The Second Law of Thermodynamics 2.6.3 Changes in Internal Energy, Enthalpy, and Entropy 2.6.4 Reversibility 2.6.5 Causes of Irreversibility 2.6.5.1 Friction 2.6.5.2 Heat Transfer Across Temperature Differences 2.6.5.3 Unrestrained Compression, Expansion of a Gas 2.6.6 Exergy and Negentropy 2.7 Exergy Analysis and Thermodynamic Optimization 2.8 Distribution Functions 2.8.1 How to Plot Statistics 2.8.2 Maxwellian Distribution 2.8.3 Fermi–Dirac Distribution 2.9 Boltzmann's Law 2.10 Phases of a Pure Substance Problems References Chapter-3---Mechanical-Heat-Engi_2022_Fundamentals-of-Renewable-Energy-Proce 3 Mechanical Heat Engines 3.1 Heats of Combustion 3.2 Carnot Efficiency 3.2.1 Using the T-s Diagram 3.3 Engine Types 3.3.1 Closed and Open Configurations 3.3.2 Heat Sources 3.3.3 Working Fluids 3.3.4 Compressor Types 3.3.5 Hardware Specificity 3.3.6 Type of Combustion and Ignition 3.3.7 Future Outlook 3.4 Four and Two Stroke Engines 3.5 The Otto Engine 3.5.1 The Efficiency of an Otto Engine 3.5.2 Improving the Efficiency of the Otto Engine 3.6 The Diesel Cycle 3.7 Gasoline 3.7.1 Heat of Combustion 3.7.2 Antiknock Characteristics 3.8 Knocking 3.9 Rankine Cycle 3.9.1 The Boiling of Water 3.9.2 Condenser and Pump 3.9.3 The Steam Engine – Steam Turbine 3.9.4 Increasing the Efficiency 3.9.5 And Now? 3.10 The Brayton Cycle 3.11 Combined Cycles 3.12 Hybrid Engines for Automobiles 3.13 The Stirling Engine 3.13.1 The Kinematic Stirling Engine 3.13.1.1 The Alpha Stirling Engine Process 0 –>1 (Isothermal Compression) Process 1 –>2 (Gas Transfer, Followed by Isometric Heat Addition) Process 2 –>3 (Isothermal Expansion) Process 3 –>0 (Isometric Heat Rejection) 3.13.1.2 The Beta Stirling Engine 3.13.1.3 The Implementation of the Kinematic Stirling 3.13.2 The Free Piston Stirling Engine 3.13.3 Power Cycles Summary Problems References Chapter-4---Ocean-Thermal-Energy-Con_2022_Fundamentals-of-Renewable-Energy-P 4 Ocean Thermal Energy Converters 4.1 Introduction 4.1.1 Ocean Temperature Profile 4.2 OTEC Configurations 4.2.1 OTEC Using Hydraulic Turbines 4.2.2 OTEC Using Vapor Turbines 4.3 OTEC Efficiency 4.4 Power Output and Volumetric Flow Rate 4.5 Worldwide OTEC Resources 4.6 An OTEC Design 4.7 Heat Exchangers 4.8 Siting Problems References Chapter-5---Thermoelectricity_2022_Fundamentals-of-Renewable-Energy-Processe 5 Thermoelectricity 5.1 Experimental Observations 5.2 Some Applications of Thermoelectric Generators 5.2.1 The Thermoelectric Generator 5.2.2 Design of a Thermoelectric Generator 5.2.3 Radioisotope Thermoelectric Generators 5.3 Thermoelectric Refrigerators and Heat Pumps 5.3.1 Design Using an Existing Thermocouple 5.3.2 Design Based on Given Semiconductors 5.4 Directions and Signs 5.5 Thermoelectric Thermometers 5.6 Figure of Merit of a Material 5.7 The Wiedemann–Franz–Lorenz Law 5.8 Thermal Conductivity in Solids 5.9 Seebeck Coefficient of Semiconductors 5.10 Performance of Thermoelectric Materials 5.11 Temperature Dependence 5.12 Battery Architecture 5.13 The Physics of Thermoelectricity 5.13.1 The Seebeck Effect 5.13.2 The Peltier Effect 5.13.3 The Thomson Effect 5.13.4 Kelvin's Relations Problems References Chapter-6---Thermionics_2022_Fundamentals-of-Renewable-Energy-Processes 6 Thermionics 6.1 Introduction 6.2 Thermionic Emission 6.3 Electron Transport 6.3.1 The Child–Langmuir Law 6.4 Lossless Diodes With Space Charge Neutralization 6.4.1 Interelectrode Potentials 6.4.2 V-J Characteristics 6.4.3 The Open-Circuit Voltage 6.4.4 Maximum Power Output 6.5 Losses in Vacuum Diodes With No Space Charge 6.5.1 Efficiency 6.5.2 Radiation Losses 6.5.2.1 Radiation of Heat 6.5.2.2 Efficiency With Radiation Losses Only 6.5.3 Excess Electron Energy 6.5.4 Heat Conduction 6.5.5 Lead Resistance 6.6 Real Vacuum Diodes 6.7 Vapor Diodes 6.7.1 Cesium Adsorption 6.7.2 Contact Ionization 6.7.3 Thermionic Ion Emission 6.7.4 Space Charge Neutralization Conditions 6.7.5 More V-J Characteristics 6.8 High Pressure Diodes Problems References Chapter-7---AMTEC-----Much-of-this-chapter-is-b_2022_Fundamentals-of-Renewab 7 AMTEC 7.1 Introduction 7.2 Operating Principle 7.3 Vapor Pressure 7.4 Pressure Drop in the Sodium Vapor Column 7.5 Mean Free Path of Sodium Ions 7.6 V-I Characteristics of an AMTEC 7.7 Efficiency 7.8 Thermodynamics of an AMTEC Problems References Chapter-8---Radio-Noise-Generato_2022_Fundamentals-of-Renewable-Energy-Proce 8 Radio-Noise Generators 8.1 Introduction 8.2 Operation References Chapter-9---Fuel-Cells_2022_Fundamentals-of-Renewable-Energy-Processes 9 Fuel Cells 9.1 Introduction 9.2 Voltaic Cells 9.3 Fuel Cell Classification 9.3.1 Temperature of Operation 9.3.2 State of the Electrolyte 9.3.3 Type of Fuel 9.3.4 Chemical Nature of the Electrolyte 9.4 Fuel Cell Reactions 9.4.1 Alkaline Electrolytes 9.4.2 Acid Electrolytes 9.4.3 Molten Carbonate Electrolytes 9.4.4 Ceramic Electrolytes 9.4.5 Methanol Fuel Cells 9.4.6 Formic Acid Fuel Cells 9.5 Typical Fuel Cell Configurations 9.5.1 Demonstration Fuel Cell (KOH) 9.5.2 Phosphoric Acid Fuel Cells (PAFCs) 9.5.2.1 A Fuel Cell Battery (Engelhard) 9.5.2.2 First-Generation Fuel Cell Power Plant 9.5.3 Molten Carbonate Fuel Cells (MCFCs) 9.5.3.1 Second-Generation Fuel Cell Power Plant 9.5.4 Ceramic Fuel Cells (SOFCs) 9.5.4.1 Third-Generation Fuel Cell Power Plant 9.5.4.2 High Temperature Ceramic Fuel Cells 9.5.4.3 Low Temperature Ceramic Fuel Cells 9.5.5 Solid Polymer Electrolyte Fuel Cells—PEMs 9.5.5.1 Cell Construction 9.5.5.1.1 Membrane 9.5.5.1.2 Catalysts 9.5.5.1.3 Water Management 9.5.6 Direct Methanol Fuel Cells 9.5.7 Direct Formic Acid Fuel Cells (DFAFCs) 9.5.8 Solid Acid Fuel Cells (SAFCs) 9.5.9 Metallic Fuel Cells—Zinc-Air Fuel Cells 9.5.10 Microbial Fuel Cells 9.6 Fuel Cell Applications 9.6.1 Stationary Power Plants 9.6.2 Automotive Power Plants 9.6.3 Other Applications 9.7 The Thermodynamics of Fuel Cells 9.7.1 Heat of Combustion 9.7.2 Free Energy 9.7.3 Efficiency of Reversible Fuel Cells 9.7.4 Effects of Pressure and Temperature on the Enthalpy and Free Energy Changes of a Reaction 9.7.4.1 Enthalpy Dependence on Temperature 9.7.4.2 Enthalpy Dependence on Pressure 9.7.4.3 Free Energy Dependence on Temperature 9.7.4.4 Free Energy Dependence on Pressure 9.7.4.5 The Nernst Equation 9.7.4.6 Voltage Dependence on Temperature 9.8 Performance of Real Fuel Cells 9.8.1 Current Delivered by a Fuel Cell 9.8.2 Rates of Species Consumption and Production 9.8.3 Efficiency of Practical Fuel Cells 9.8.4 V-I Characteristics of Fuel Cells 9.8.4.1 Empirically Derived Characteristics 9.8.4.2 Scaling Fuel Cells 9.8.4.3 More Complete Empirical Characteristics of Fuel Cells 9.8.5 Open-Circuit Voltage 9.8.6 Reaction Kinetics 9.8.6.1 Reaction Rates 9.8.6.2 Activation Energy 9.8.6.3 Catalysis 9.8.7 The Butler–Volmer Equation 9.8.7.1 Exchange Currents 9.8.8 Transport Losses 9.8.9 Heat Dissipation by Fuel Cells 9.8.9.1 Heat Removal From Fuel Cells 9.9 Appendix: Specific Heats of H2, O2, and H2O Problems References Chapter-10---Hydrogen-Productio_2022_Fundamentals-of-Renewable-Energy-Proces 10 Hydrogen Production 10.1 Generalities 10.2 Chemical Production of Hydrogen 10.2.1 History 10.2.2 Metal-Water Hydrogen Production 10.2.3 Large-Scale Hydrogen Production 10.2.3.1 Partial Oxidation 10.2.3.2 Steam Reforming 10.2.3.3 Thermal Decomposition 10.2.3.4 Syngas 10.2.3.5 Shift Reaction 10.2.3.6 Methanation 10.2.3.7 Methanol 10.2.3.8 Syncrude 10.2.4 Hydrogen Purification 10.2.4.1 Desulfurization 10.2.4.2 CO2 Removal 10.2.4.3 CO Removal and Hydrogen Extraction 10.2.4.4 Hydrogen Production Plants 10.2.5 Compact Fuel Processors 10.2.5.1 Formic Acid 10.3 Electrolytic Hydrogen 10.3.1 Introduction 10.3.2 Electrolyzer Configurations 10.3.2.1 Liquid Electrolyte Electrolyzers 10.3.2.2 Solid Polymer Electrolyte Electrolyzers 10.3.2.3 Ceramic Electrolyte Electrolyzers 10.3.2.4 High Efficiency Steam Electrolyzers 10.3.3 Efficiency of Electrolyzers 10.3.4 Concentration-Differential Electrolyzers 10.3.5 Electrolytic Hydrogen Compression 10.4 Thermolytic Hydrogen 10.4.1 Direct Dissociation of Water 10.4.2 Chemical Dissociation of Water 10.4.2.1 Mercury-Hydrobromic Acid Cycle 10.4.2.2 Barium Chromate Cycle 10.4.2.3 Sulfur-Iodine Cycle 10.5 Photolytic Hydrogen 10.5.1 Generalities 10.5.2 Solar Photolysis 10.6 Photobiologic Hydrogen Production 10.7 Target Cost Problems References Chapter-11---Hydrogen-Storage_2022_Fundamentals-of-Renewable-Energy-Processe 11 Hydrogen Storage 11.1 Introduction 11.1.1 DOE Targets for Automotive Hydrogen Storage 11.2 Compressed Gas 11.3 Cryogenic Hydrogen 11.4 Storage of Hydrogen by Adsorption 11.5 Storage of Hydrogen in Chemical Compounds 11.5.1 Generalities 11.5.2 Hydrogen Carriers 11.5.3 Water Plus a Reducing Substance 11.5.4 Formic Acid 11.5.5 Metal Hydrides 11.5.5.1 Characteristics of Hydride Materials 11.5.5.1.1 Plateau Slope 11.5.5.1.2 Sorption Hysteresis 11.5.5.1.3 Usable Capacity 11.5.5.1.4 Heat Capacity 11.5.5.1.5 Plateau Pressure Dependence on Temperature 11.5.5.2 Thermodynamics of Hydride Systems 11.6 Hydride Hydrogen Compressors 11.7 Hydride Heat Pumps Problems References Chapter-12---Solar-Radiation_2022_Fundamentals-of-Renewable-Energy-Processes 12 Solar Radiation 12.1 The Nature of Solar Radiation 12.2 Irradiance 12.2.1 Generalities 12.2.2 Irradiance on a Sun-Tracking Surface 12.2.3 Irradiance on a Stationary Surface 12.2.4 Horizontal Surfaces 12.3 Solar Collectors 12.3.1 Solar Architecture 12.3.1.1 Exposure Control 12.3.1.2 Thermal Energy Storage 12.3.1.3 Circulation 12.3.1.4 Insulation 12.3.2 Flat Collectors 12.3.3 Evacuated Tubes 12.3.4 Concentrators 12.3.4.1 Holographic Plates 12.3.4.2 Nonimaging Concentrators 12.3.4.3 Common Concentration Systems for Power Generation 12.4 Some Solar Plant Configurations 12.4.1 High Temperature Solar Heat Engine 12.4.2 Solar Tower (Solar Chimney) 12.4.3 Solar Ponds 12.5 Time Corrections 12.5.1 Time Zones 12.5.2 Time Offset 12.6 Appendix I: The Measurement of Time 12.6.1 How Long Is an Hour? 12.6.2 The Calendar 12.6.3 The Julian Day Number 12.7 Appendix II: Orbital Mechanics 12.7.1 Sidereal Versus Solar 12.7.2 Orbital Equation 12.7.3 Relationship Between Ecliptic and Equatorial Coordinates 12.7.4 The Equation of Time 12.7.5 Orbital Eccentricity 12.7.6 Orbital Obliquity 12.7.7 Further Reading Problems References Chapter-13---Biomass_2022_Fundamentals-of-Renewable-Energy-Processes 13 Biomass 13.1 Introduction 13.2 The Composition of Biomass 13.3 Biomass as Fuel 13.3.1 Wood Gasifiers 13.3.2 Ethanol 13.3.2.1 Ethanol Production 13.3.2.2 Fermentation 13.3.2.3 Ethanol From Corn 13.3.2.4 Drawback of Ethanol 13.3.3 Dissociated Alcohols 13.3.4 Anaerobic Digestion 13.4 Photosynthesis 13.5 Microalgae 13.6 A Little Bit of Organic Chemistry 13.6.1 Hydrocarbons 13.6.2 Oxidation Stages of Hydrocarbons 13.6.3 Esters 13.6.4 Saponification 13.6.5 Waxes 13.6.6 Carbohydrates 13.6.7 Heterocycles Problems References Chapter-14---Photovoltaic-Convert_2022_Fundamentals-of-Renewable-Energy-Proc 14 Photovoltaic Converters 14.1 Introduction 14.2 Building Techniques 14.3 Overview of Semiconductors 14.4 Basic Operation 14.5 Theoretical Efficiency 14.6 Carrier Multiplication 14.7 Spectrally Selective Beam Splitting 14.7.1 Cascaded Cells 14.7.1.1 Multiband Semiconductors 14.7.2 Filtered Cells 14.7.3 Holographic Concentrators 14.8 Thermophotovoltaic Cells 14.9 The Ideal and the Practical 14.10 Solid State Junction Photodiode 14.10.1 Effect of Light Power Density on Efficiency 14.10.2 Effect of Reverse Saturation Current 14.10.3 Effect of Operating Temperature on Efficiency 14.10.4 Effect of Load on Efficiency 14.11 The Reverse Saturation Current 14.12 Practical Efficiency 14.13 Dye-Sensitized Solar Cells (DSSCs) 14.14 Organic Photovoltaic Cells (OPCs) 14.14.1 Conducting Polymers 14.14.1.1 Band Structure in Inorganic Semiconductors 14.14.2 Polymer Solar Cells 14.15 Perovskite Solar Cells 14.16 Optical Rectennas 14.17 Solar Power Satellite 14.17.1 Beam From Space 14.17.2 Solar Energy to DC Conversion 14.17.3 Microwave Generation 14.17.4 Radiation System 14.17.5 Receiving Array 14.17.6 Attitude and Orbital Control 14.17.7 Space Transportation and Space Construction 14.17.8 Future of Space Solar Power Projects Appendix A: Values of Two Definite Integrals Used in the Calculation of Photodiode Performance Problems References Chapter-15---Wind-Energy_2022_Fundamentals-of-Renewable-Energy-Processes 15 Wind Energy 15.1 History 15.2 Wind Machine Configurations 15.2.1 Drag-Type Wind Turbines 15.2.2 Lift-Type Wind Turbines 15.2.3 Magnus Effect Wind Machines 15.2.4 Vortex Wind Machines 15.3 Measuring the Wind 15.3.1 The Rayleigh Distribution 15.3.2 The Weibull Distribution 15.4 Availability of Wind Energy 15.5 Wind Turbine Characteristics 15.6 Principles of Aerodynamics 15.6.1 Flux 15.6.2 Power in the Wind 15.6.3 Dynamic Pressure 15.6.4 Wind Pressure 15.6.5 Available Power (Betz Limit) 15.6.5.1 The Rankine–Froude Theorem 15.6.6 Efficiency of a Wind Turbine 15.6.6.1 Solidity 15.6.6.2 Wake Rotation 15.6.6.3 Other Losses 15.7 Airfoils 15.8 Reynolds Number 15.9 Aspect Ratio 15.10 Wind Turbine Analysis 15.10.1 Horizontal Axis Turbines (Propeller Type) 15.10.2 Vertical Axis Turbines 15.10.2.1 Aspect Ratio (of a Wind Turbine) 15.10.2.2 Centrifugal Force 15.10.2.3 Performance Calculation 15.11 Magnus Effect 15.12 Computational Tools and Other Resources Problems References Chapter-16---Ocean-Engines_2022_Fundamentals-of-Renewable-Energy-Processes 16 Ocean Engines 16.1 Wave Energy 16.1.1 About Ocean Waves – Terminology 16.1.2 The Velocity of Ocean Waves 16.1.3 Wave Height 16.1.4 Energy and Power in a Wave 16.1.5 Wave Energy Converters 16.1.5.1 Offshore Wave Energy Converters 16.1.5.2 Heaving Buoy Converters 16.1.5.3 Hinged Contour Converters 16.1.5.4 Overtopping Converters 16.1.5.5 Shoreline Wave Energy Converters 16.1.5.6 Tapered Channel System 16.1.5.7 Oscillating Water Column (OWC)—Wavegen System 16.2 Tidal Energy 16.2.1 The Nature of Tides 16.2.2 Energy and Power in Tides 16.2.3 Tidal Energy Converters 16.3 Energy From Currents 16.3.1 Marine Current Turbine System 16.3.1.1 Horizontal Forces 16.3.1.2 Anchoring Systems 16.3.1.3 Corrosion and Biological Fouling 16.3.1.4 Cavitation 16.3.1.5 Large Torque 16.3.1.6 Maintenance 16.3.1.7 Power Transmission 16.3.1.8 Turbine Farms 16.3.1.9 Ecology 16.3.1.10 Modularity 16.4 Salination Energy 16.5 Osmosis 16.6 Further Reading Problems References Chapter-17---Nuclear-Energy_2022_Fundamentals-of-Renewable-Energy-Processes 17 Nuclear Energy 17.1 Introduction 17.2 Fission Reactors 17.2.1 Generations of Nuclear Fission Reactors 17.2.2 Nomenclature and Units 17.2.3 Fission – How Current Reactors Work 17.2.3.1 Heavy-Metal Fast Breeder Reactor 17.2.3.2 High Temperature Gas Reactors (HTGRs) 17.3 Fusion Reactors 17.3.1 Magnetic Confinement 17.3.1.1 Pinch Instability 17.3.2 Inertial Confinement Problems References Chapter-18---Storage-of-Energy_2022_Fundamentals-of-Renewable-Energy-Process 18 Storage of Energy 18.1 Generalities 18.1.1 Ragone Plot 18.2 Electrochemical Storage (Batteries) 18.2.1 Introduction 18.2.2 Capacity 18.2.3 The Chemistry of Some Batteries 18.2.3.1 What All Batteries Have in Common 18.2.3.2 Primary Batteries 18.2.3.3 Secondary Batteries 18.3 Capacitive Storage 18.3.1 Capacitors 18.3.2 Supercapacitors 18.3.3 Hybrid Capacitors 18.3.4 Using Capacitors for Energy Storage 18.3.4.1 Discharging Capacitors 18.3.4.2 Interconnecting Capacitors 18.4 Flywheels and Pumped Storage 18.4.1 Kinetic Energy Storage 18.4.2 Gravitational Potential Energy Storage 18.5 Thermal Energy Storage Problems References Index_2022_Fundamentals-of-Renewable-Energy-Processes Index