دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک کوانتوم ویرایش: 1st نویسندگان: Vladimir A. Fock سری: ISBN (شابک) : 0828551979, 9780828551977 ناشر: Mir Publishers سال نشر: 1978 تعداد صفحات: 366 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Fundamentals of quantum mechanics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول مکانیک کوانتومی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Front Jacket Front Hard Cover Title Page FOREWORD PREFACE TO THE SECOND RUSSIAN EDITION PREFACE TO THE FIRST RUSSIAN EDITION CONTENTS Part I BASIC CONCEPTS OF QUANTUM MECHANICS Chapter I THE PHYSICAL AND EPISTEMOLOGICAL BASES OF QUANTUM MECHANICS 1. The need for new methods and concepts in describing atomic phenomena 2. The classical description of phenomena 3. Range of application of the classical way of describing phenomena. Heisenberg's and Bohr's uncertainty relations 4. Relativity with respect to the meansof observation as the basis for the quantum way of describing phenomena 5. Potential possibility in quantum mechanics Chapter II THE MATHEMATICAL APPARATUSOF QUANTUM MECHANICS 1. Quantum mechanics and the linear-operator problems 2. The operator concept and examples 3. Hermitian conjugate. Hermiticity 4. Operator and matrix multiplication 5. Eigenvalues and eigenfunctions 6. The Stieltjes integral and the operator corresponding to multiplication into the independent variable 7. Orthogonality of eigenfunctions and normalization 8. Expansion In eigenfunctions. Completeness property of eigenfunctions Chapter III QUANTUM MECHANICAL OPERATORS 1. Interpretation of the eigenvalues of an operator 2. Poisson brackets 3. Position and momentum operators 4. Eigenfunctions and eigenvalues of the momentum operator 5. Quantum description of systems 6. Commutativity of operators 7. Angular momentum 8. The energy operator 9. Canonical transformation 10. An example of canonical transformation 11. Canonical transformation as an operator 12. Unitary Invariants 13. Time evolution of systems. Time dependence of operators 14. Heisenberg's matrices 15. Semiclassical approximation 16. Relation between canonical transformation and the contact transformation of classical mechanics Chapter IV THE PROBABILISTIC INTERPRETATION OF QUANTUM MECHANICS 1. Mathematical expectation in the probability theory 2. Mathematical expectation in quantum mechanics 3. The probability formula 4. Time dependence of mathematical expectation 5. Correspondence between the theory of linear operators and the quantum theory 6. The concept of statistical ensemble In quantum mechanics Part II SCHRODINGER'S THEORY Chapter I THE SCHRODINGER EQUATION. THE HARMONIC OSCILLATOR. 1. Equations of motion and the wave equation 2. Constants of the motion 3. The Schrodinger equation for the harmonic oscillator 4. The one·dimensional harmonic oscillator 5. Hermite polynomials 6. Canonical transformation as illustratedby the harmonic-oscillator problem 7. Heisenberg's uncertainty relations 8. The time dependence of matrices. A comparison with the classical theory 9. An elementary criterion for the applicability of the formulas of classical mechanics Chapter II PERTURBATION THEORY 1. Statement of the problem 2. Solution of the nonhomogeneous equation 3. Nondegenerate eigenvalues 4. Degenerate eigenvalues. Expansion in powers of the smallness parameter 5. The eigenfunctions in the zeroth-order approximation 6. The first and higher approximations 7. The case of adjacent eigenvalues B. The anharmonic oscillator Chapter III RADIATION, THE THEORY OF DISPERSION, AND THE LAW OF DECAY 1. Classical formulas 2. Charge density and current density 3. Frequencies and intensities 4. Intensities in a continuous spectrum 5. Perturbation of an atom by a light wave 6. The dispersion formula 8. The law of decay of a quasi-stationary state 7. Penetration of a potential barrier by a particle Chapter IV AN ELECTRON IN A CENTRAL FIELD 1. General remarks 2. Conservation of angular momentum 3. Operators In spherical coordinates. Separation of variables 4. Solution of the differential equation for spherical harmonics 5. Some properties of spherical harmonics 6. Normalized spherical harmonics 7. The radial functions. A general survey 8. Description of the states of a valence electron. Quantum numbers 9. The selection rule Chapter V THE COULOMB FIELD 1. General remarks 2. The radial equation for the hydrogen atom. Atomic units 3. Solution of an auxiliary problem 4. Some properties of generalized Laguerre polynomials 5. Eigenvalues and eigenfunctions of the auxiliary problem 6. Energy levels and radial functions for the discrete hydrogen spectrum 7. Solution of the differential equation for the continuous spectrum in the formof a definite integral 8. Derivation of the asymptotic expression 9. Radial functions for the continuous hydrogen spectrum 10. Intensities in the hydrogen spectrum 11. The Stark effect. General remarks 12. The Schrodinger equation in parabolic coordinates 13. Splitting of energy levels In an electric field 14. Scattering of a-partlcles. Statement of the problem 15. Solution of equations 16. The Rutherford scattering law 17. The virial theorem in classical and in quantum mechanics 18. Some remarks concerning the superposition principle and the probabilistic interpretation of the wave function Part III PAULl'S THEORY OF THE ELECTRON 1. The electron angular momentum 2. The operators of total angular momentumin spherical coordinates 3. Spherical harmonics with spin 4. Some properties of spherical harmonics with spin 5. The Pauli wave equation 6. Operator P in spherical and cylindrical coordinates and its relation to M 7. An electron in a magnetic field Part IV THE MANY-ELECTRON PROBLEM OF QUANTUM MECHANICS AND THE STRUCTURE OF ATOMS 1. Symmetry properties of the wave function 2. The Hamiltonian and Its symmetry 3. The self-consistent field method 4. The equation for the valence electron and the operator of quantum exchange 5. The self-consistent field method in the theory of atoms 6. The symmetry of the Hamiltonian of a hydrogen-like atom Part V DIRAC'S THEORY OF THE ELECTRON Chapter I THE DIRAC EQUATION 1. Quantum mechanics and the theory of relativity 2. Classical equations of motion 3. Derivation of the wave equation 4. The Dirac matrices 5. The Dirac equation for a free electron 6. Lorentz transformations 7. Form of matrix S for spatial rotationsof axes and for Lorentz transformations 8. Current density 9. The Dirac equation in the case of a field. Equations of motion 10. Angular momentum and the spin vector in Dirac's theory 11. The kinetic energy of an electron 12. The second intrinsic degree of freedom of the electron 13. Second-order equations Chapter II THE USE OF THE DIRAC EQUATION IN PHYSICAL PROBLEMS 1. The free electron 2. An electron in a homogeneous magnetic field 3. Constants of the motion in the problem with spherical symmetry 4. Generalized spherical harmonics 5. The radial equation 6. Comparison with the Schrodinger equation 7. General investigation of the radial equations 8 Quantum numbers 9. Heisenberg's matrices and the selection rule 10. Alternative derivation of the selection rule 11. The hydrogen atom. Radial functions 12. Fine-structure levels of hydrogen 13. The Zeeman effect. Statement of the problem 14. Calculation of the perturbation matrix 15. Splitting of energy levels in a magnetic field Chapter III ON THE THEORY OF POSITRONS 1. Charge conjugation 2. Basic ideas of positron theory 3. Positrons as unfilled states INDEX Back Hard Cover Back Jacket Back Cover