دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Samarendra Kumar Biswas, Umesh Mathur, Swapan Kumar Hazra سری: ISBN (شابک) : 0367620766, 9780367620769 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 498 [499] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Fundamentals of Process Safety Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی مهندسی ایمنی فرآیند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This textbook comprehensively covers several technical aspects of process safety engineering. It provides readers with an understanding of hazards in process plants and how to manage in a safe and professional manner. The text covers important concepts including static electricity, modeling for radiation intensity, thermodynamics of fluid phase equilibria, intensity of thermal radiation, boiling liquid expanding vapor explosion (BLEVE), emission source models, computational fluid dynamics and hazard identification methods. Case studies are included in the textbook. Aimed at senior undergraduate and graduate students in the field of chemical engineering for courses on process safety engineering/process safety, this book: Discusses fundamentals, methods, and procedures for the industrial practice of Process Safety Engineering. Covers thermodynamic basis for computing release rates from ruptures in pipelines or vessels and relief valves. Discusses static electricity hazards in a comprehensive and authoritative manner, with examples. Examines industrial fires and explosions, dispersion of toxic and flammable gases and vapours. Discusses methods of qualitative and quantitative risk assessment and control in detail.
Cover Half Title Title Page Copyright Page Table of Contents Foreword Preface Acknowledgments List of Figures List of Tables Acronyms and Abbreviations Authors Chapter 1 Hazards in the Process Industries 1.1 Chemical Hazards 1.1.1 Flammable Chemicals 1.1.2 Explosive Chemicals 1.1.3 Reactive Chemicals 1.1.4 Toxic Chemicals 1.2 Physical Hazards 1.2.1 Physical Explosion 1.2.2 Electrostatic Charges 1.2.3 Rollover/Boilover of Liquids 1.3 Environmental Hazards 1.3.1 Air Pollutants 1.3.2 Water Pollutants 1.3.3 Solid Wastes 1.4 Other Hazards 1.4.1 Electricity 1.4.2 Hazards in Maintenance Work 1.5 Classification Categories and Labeling of Hazardous Chemicals 1.5.1 Globally Harmonized System (GHS) 1.5.2 Adoption of GHS by Countries 1.6 Provision of Hazard Information 1.6.1 Safety Data Sheets (SDS) Reference Chapter 2 Overview of Some Major Accidents in the World 2.1 Cleveland, Ohio 2.1.1 Brief Description of Facility and Process 2.1.2 The Accident 2.1.3 Causes, Circumstances, and Consequences 2.1.4 Lessons/Recommendations 2.2 Feyzin, France 2.2.1 Brief Description of Facility and Process 2.2.2 The Accident 2.2.3 Causes, Circumstances, and Consequences 2.2.4 Lessons/Recommendations 2.3 Flixborough, UK 2.3.1 Brief Description of Facility and Process 2.3.2 The Accident 2.3.3 Causes, Circumstances, and Consequences 2.3.4 Lessons/Recommendations 2.4 Seveso, Italy 2.4.1 Brief Description of Facility and Process 2.4.2 The Accident 2.4.3 Causes, Circumstances, and Consequences 2.4.4 Lessons/Recommendations 2.5 Qatar, Persian Gulf 2.5.1 Brief Description of Facility and Process 2.5.2 The Accident 2.5.3 Causes, Circumstances, and Consequences 2.5.4 Lessons/Recommendations 2.6 Caracas, Venezuela 2.6.1 Brief Description of Facilities and Process 2.6.2 The Accident 2.6.3 Causes, Circumstances, and Consequences 2.6.4 Lessons/Recommendations 2.7 Mexico City 2.7.1 Brief Description of Facility and Process 2.7.2 The Accident 2.7.3 Causes, Circumstances, and Consequences 2.7.4 Lessons/Recommendations 2.8 Bhopal, India 2.8.1 Brief Description of Facilities and Process 2.8.2 The Accident 2.8.3 Causes, Circumstances, and Consequences 2.8.4 Lessons/Recommendations 2.9 Offshore Oil Rig Piper Alpha, North Sea 2.9.1 Brief Description of Facility and Process 2.9.2 The Accident 2.9.3 Causes, Circumstances, and Consequences 2.9.4 Lessons/Recommendations 2.10 Bharat Petroleum Refinery, Bombay, India 2.10.1 Description of Facility and Process 2.10.2 The Accident 2.10.3 Causes, Circumstances, and Consequences 2.10.4 Lessons/Recommendations 2.11 Petrochemical Complex, Phillips Petroleum, Pasadena, USA 2.11.1 Brief Description of Facility and Processes 2.11.2 The Accident 2.11.3 Causes, Circumstances, and Consequences 2.11.4 Lessons/Recommendations 2.12 LPG Import Terminal Hindustan Petroleum, Vishakhapatnam, India 2.12.1 Brief Description of the Facility and the Process 2.12.2 The Accident 2.12.3 Causes, Circumstances, and Consequences 2.12.4 Lessons/Recommendations 2.13 Grande Paroisse, Ammonium Nitrate Facility Toulouse, France 2.13.1 Brief Description of Facility and Process 2.13.2 The Accident 2.13.3 Causes, Circumstances, and Consequences of the Accident 2.13.4 Lessons/Recommendations 2.14 Space Shuttle Columbia, NASA Florida 2.14.1 Brief Description of Space Program and the Shuttle 2.14.2 The Accident 2.14.3 Causes, Circumstances, and Consequences 2.14.4 Lessons/Recommendations 2.15 LNG Liquefaction Facility, Skikda, Algeria 2.15.1 Brief Description of Facility and the Process 2.15.2 The Accident 2.15.3 Causes, Circumstances, and Consequences 2.15.4 Lessons/Recommendations 2.16 BP Refinery, Texas City, Texas, USA 2.16.1 Brief Description of Facility and Process 2.16.2 The Accident 2.16.3 Causes, Circumstances, and Consequences of the Accident 2.16.4 Lessons/Recommendations 2.17 Imperial Sugar, Port Wentworth, Georgia, USA 2.17.1 Brief Description of Facility and Process 2.17.2 The Accident 2.17.3 Causes, Circumstances, and Consequences 2.17.4 Lessons/Recommendations 2.18 Indian Oil Corporation Product Tank Farm, Jaipur, Rajasthan, India 2.18.1 Description of Facility and Process 2.18.2 The Accident 2.18.3 Causes, Circumstances, and Consequences 2.18.4 Lessons/Recommendations 2.19 BP Deepwater Horizon Offshore Rig 2.19.1 Description of Facility and Process 2.19.2 The Accident 2.19.3 Causes, Circumstances, and Consequences 2.19.4 Lessons/Recommendations 2.20 Summary and Conclusions References Chapter 3 Fundamentals of Fire Processes 3.1 How Fire Starts 3.1.1 Flammability Limits 3.1.1.1 Pure Fuels 3.1.1.2 Dependence of LFL and UFL on Pressure and Temperature 3.1.1.3 Mixture of Fuels in Air 3.1.1.4 Flammability Range in Oxygen 3.1.1.5 Effect of Addition of Inert Gases 3.1.2 Flash Point 3.1.3 Fire Point 3.2 Heat Balance in Flames 3.3 Types of Flames 3.3.1 Premixed and Diffusion Flames 3.3.2 Pool Fire 3.3.3 Jet Fire 3.3.4 Vapor Cloud Fire 3.3.5 Fireball 3.4 Ignition 3.4.1 Requirements and Characteristics of Ignition Sources 3.4.2 Hot Work 3.4.3 Electrical Equipment 3.4.4 Static Electricity 3.5 Effect of Thermal Radiation 3.5.1 Effect on the Human Body 3.5.2 Effect on Plant and Machinery 3.6 Fire Prevention Systems 3.6.1 Good Housekeeping 3.6.2 Control of Flammable Materials 3.6.3 Control of Sources of Ignition 3.6.4 Fire Hazards Awareness 3.6.5 Monitoring 3.7 Fire Protection Systems 3.7.1 Passive Fire Protection 3.7.2 Active Fire Protection 3.7.2.1 Detection of Flammable Material 3.7.2.2 Detection of Fire 3.7.2.3 Cooling by Water 3.7.2.4 Fire Extinguishing 3.7.2.5 Fire fighting Plan References Chapter 4 Static Electricity 4.1 Historical Background of Static Electricity 4.2 Basic Concepts of Static Electricity 4.3 Conductors and Insulators 4.3.1 Liquids 4.3.2 Solids 4.4 Generation of Electrostatic Charge 4.4.1 Mechanisms of Charge Generation 4.4.1.1 Relative Movement at Material Interfaces 4.4.1.2 Induction 4.4.1.3 Charge Transfer 4.4.2 Quantitative Relationships for Charge Generation 4.4.2.1 Charge Generation on Liquids 4.4.2.2 Charge Generation in Powders 4.5 Accumulation of Electrostatic Charge 4.5.1 Accumulation in Liquids 4.5.2 Accumulation on Insulated Conductors 4.5.3 Accumulation on Lined/Coated Containers 4.5.4 Accumulation on Powders 4.6 Electrostatic Discharge 4.6.1 Spark Discharge 4.6.2 Corona Discharge 4.6.3 Brush Discharge 4.6.4 Propagating Brush Discharge 4.6.5 Bulking Brush Discharge 4.7 Ignition of Flammable Vapors and Dusts by Electrostatic Discharge 4.7.1 Hybrid Mixtures 4.8 Hazards from People and Clothing 4.9 Earthing and Bonding 4.10 Examples of Static Ignition 4.10.1 Draining Flammable Liquids into Buckets 4.10.2 Removing Synthetic Clothing from Body 4.10.3 Charging High-Resistivity Flakes/Powders 4.10.4 Filling Polyethylene Granules into a Silo 4.11 Summary of Common Precautionary Measures for Static Hazards References Chapter 5 Pool Fire 5.1 Size and Shape of Flames 5.1.1 Confined Pool Fire on Land 5.1.1.1 Pool Diameter 5.1.1.2 Burning Rate 5.1.1.3 Flame Height 5.1.2 Unconfined Pool Fire on Land 5.1.3 Pool Fire on Water 5.1.4 Tank Fire 5.2 Modeling for Radiation Intensity 5.2.1 Surface Emissive Power of Flames 5.2.2 View Factor between a Flame and a Target 5.2.2.1 Case 1: Pool Fire and Target at Ground Level 5.2.2.2 Case 2: Tank Fire with Target at Ground Level/Elevated Position 5.2.3 Atmospheric Transmissivity 5.2.4 Assessment of Safety Distance References Chapter 6 Jet Fire 6.1 Flow through a Hole (Free Expansion) 6.1.1 Theoretical Basis 6.1.2 Compressibility Factor and Enthalpy for Real Gases 6.1.3 Release Rate Calculation 6.1.3.1 Bernoulli’s Equation 6.1.3.2 Sonic Velocity 6.1.3.3 C[sub(p)], C[sub(v)], and γ = C[sub(p)]/C[sub(v)] Ratio 6.1.3.4 Density 6.1.3.5 Velocity 6.1.4 Additional Examples 6.1.5 Flashing of Liquids 6.1.6 Flashing of Pure Components 6.2 Thermodynamics of Fluid Phase Equilibria 6.2.1 Phase Equilibria in Hydrocarbon Mixtures 6.2.2 Phase Equilibria in Chemical Mixtures 6.2.3 Flash Calculations for Mixtures 6.2.4 Laboratory Measurements Versus Estimation Methods in Phase Equilibria 6.2.5 Commercial Process Simulators 6.2.6 Release of a LiquefiedGas: Two-Phase Flashing Flow 6.2.7 Concluding Remarks for Release Rate Calculations 6.3 Calculations for Jet Fires 6.3.1 Size and Shape of Flames 6.3.1.1 Hawthorn, Weddell, and Hottel Model 6.3.1.2 API Model 6.3.1.3 Shell Model 6.4 Estimation of Radiation Intensity 6.4.1 Fractional Radiation 6.4.2 Radiation Intensity by the API method 6.4.3 Radiation Intensity by the Shell Method References Chapter 7 Vapor Cloud Fire 7.1 Flash Fire Accidents and Experiments 7.2 Flame Speed 7.2.1 Premixed Flame 7.2.2 Nonpremixed Flame 7.3 Flame Dimensions 7.4 Effect of Flame Exposure References Chapter 8 Fireball 8.1 BLEVE 8.2 Diameter and Duration of Fireball 8.3 Intensity of Thermal Radiation 8.3.1 Fractional Radiation 8.3.2 Surface Emissive Power 8.3.3 View Factor 8.3.4 Atmospheric Transmissivity 8.4 Measures to Prevent BLEVE 8.4.1 Cooling the Vessel by Water Deluge or Spray 8.4.2 Insulation of the Vessel 8.4.3 Providing an Earth Mound around the Vessel 8.5 Measures in Case of Imminent BLEVE References Chapter 9 Explosion 9.1 Kinds and Types of Explosions 9.2 Explosion Mechanisms 9.2.1 Deflagration 9.2.2 Detonation 9.2.3 DDT 9.3 VCE 9.3.1 TNT Equivalent Model 9.3.2 TNO Correlation Model 9.3.3 TNO Multienergy Model 9.3.4 Baker-Strehlow-Tang (BST) Method 9.3.5 Congestion Assessment Method 9.3.6 CFD Models 9.3.6.1 FLACS (FLame ACceleration Simulator) 9.3.6.2 EXSIM[sup(™)] (EXplosion SIMulator) 9.3.6.3 AutoReaGas Model 9.3.7 Comparison of Various Models 9.3.8 Precautionary Measures to Prevent and Minimize Damage in VCEs 9.3.9 Damage Caused by VCE 9.3.9.1 Damage to Structures – TNO 9.3.9.2 Damage to Structures – Major Hazard Assessment Panel (IChemE, U.K.) 9.3.9.3 Damage to Storage Tanks – TNO 9.3.9.4 Effect on People – Major Hazard Assessment Panel (IChemE U.K.) 9.4 Condensed Phase Explosion 9.4.1 Precautionary Measures to Minimize Damage in Condensed Phase Explosion 9.4.2 Formation of Explosive Mixture – Ammonium Nitrate (AN) 9.4.3 Effect of Mechanical or Electrical Shock 9.5 Explosions in a Chemical Reactor 9.6 Dust Explosion 9.7 Physical Explosion References Chapter 10 Toxic Releases 10.1 Process Safety Concerns – Acute Effects/Emergency Exposure Limits 10.1.1 Emergency Response Planning Guidelines 10.1.2 Toxic Endpoints 10.1.3 Acute Exposure Guideline Levels 10.1.3.1 Level 1 10.1.3.2 Level 2 10.1.3.3 Level 3 10.2 Occupational Safety Concerns – Toxicity Measures and Assessment 10.2.1 Median Lethal Dose (LD[sub(50)]) 10.2.2 Median Lethal Concentration (LC[sub(50)]) 10.2.2.1 Toxic Load 10.2.3 Immediately Dangerous to Life and Health 10.3 Regulatory Controls 10.3.1 Occupational Exposure Standards 10.4 Emergency Planning References Chapter 11 Dispersion of Gases and Vapors 11.1 Purpose of Dispersion Studies 11.2 Emission Source Models 11.2.1 Liquid Releases 11.2.2 Gas Jet Releases 11.2.3 Two-Phase Releases 11.2.4 Evaporation from Liquid Pools 11.2.4.1 Evaporation of Cryogenic Liquids 11.2.4.2 Evaporation of High Boiling Liquids 11.3 Dispersion Models 11.3.1 Passive Dispersion 11.3.1.1 Factors Affecting Passive Dispersion 11.3.1.2 Dispersion Calculations 11.3.2 Dense Gas Dispersion 11.3.3 Jet Dispersion 11.3.3.1 Dense Gas Jet Dispersion 11.3.3.2 Positively Buoyant Jet Dispersion 11.4 Computational Fluid Dynamics Modelling References Chapter 12 Hazard Identification 12.1 Framework for Hazard Management 12.2 Hazard Identification Methods 12.2.1 Safety Audit 12.2.2 What-If Checklist 12.2.3 HAZOP Study 12.2.3.1 Basic Concepts of the Study 12.2.3.2 Study Procedure 12.2.4 Failure Modes and Effects Analysis (FMEA) 12.2.5 Fault Tree and Event Tree Analysis 12.3 Comments on Choice of the Method References Chapter 13 Risk Assessment and Control 13.1 Methods of Expressing Risks 13.1.1 Fatal Accident Rate 13.1.2 Individual Risk 13.1.3 Average Individual Risk 13.1.4 Societal Risk 13.2 Layer of Protection Analysis 13.2.1 LOPA Process 13.2.2 Select Criteria for Consequence Screening 13.2.3 Select Consequence Analysis Scenarios for LOPA 13.2.4. Identify Initiating Events and Frequencies 13.2.5 Identify IPLs 13.2.6 Risk Estimation 13.2.7 Risk Evaluation 13.2.8 LOPA Summary Sheet: An Example 13.2.9 Advantages of LOPA 13.3 Barrier Analysis 13.3.1 Barrier failure and Catastrophic Accidents 13.3.2 Important Definitions Related to Barrier Management 13.3.3 Independence of Barriers 13.3.4 Barrier Management Process 13.4 QRA 13.4.1 Estimation of Frequency of a Hazardous Event 13.4.1.1 Fault Tree Methodology 13.4.1.2 Event Tree Methodology 13.4.2 Estimation of Risk 13.4.2.1 Individual Risk 13.4.2.2 Societal Risk (F-N Curve) 13.4.3 Risk Determination 13.4.4 Risk Acceptability 13.4.4.1 Individual Risk – Acceptability Criteria 13.4.4.2 Societal Risk – Acceptability Criteria 13.4.5 Risk Reduction and ALARP 13.5 Functional Safety 13.5.1 SIS 13.5.2 SRS – Safety Requirement Specification 13.5.3 SIL 13.5.3.1 SIL Verification 13.5.3.2 SIL Validation 13.6 Database for Failure Frequencies and Probabilities 13.6.1 Failure Frequencies for Tanks and Vessels 13.6.2 Failure Frequencies of Process Pipework 13.6.3 Failure Frequencies of Cross-Country Pipelines 13.6.4 Failure Rates of Loading Arms 13.6.5 Failure Frequencies for Valves 13.6.6 Failure Probabilities for Protective Equipment 13.6.7 Probabilities of Human Error 13.6.8 Ignition Probability of Flammable Liquid Releases 13.6.9 Ignition of Gas Clouds 13.7 Application of LOPA, Barrier Analysis, and QRA References Chapter 14 Human Factors in Process Safety 14.1 Accidents and Human failures 14.2 Human Role in Hazard Control 14.3 Types of Human Errors 14.4 Human Factors in Safety (HFs) 14.5 Human Error Identification 14.6 HFs – A Core Element 14.7 Human Reliability Analysis (HRA) 14.8 HRA Adoption 14.9 Human Development 14.10 Industry Response References Chapter 15 Process Safety and Manufacturing Excellence 15.1 Process Safety Leadership 15.2 Process Safety Laws and Regulations 15.3 Process Safety vis-à-vis Personnel Safety 15.4 The Role of Process and Equipment Design in Ensuring Process Safety 15.5 Strategies for Implementation of Process Safety Programs 15.5.1 Sensor Validation 15.5.2 Sample Time Recording 15.5.3 Control System Hardware and Configuration 15.5.4 Control Valves 15.5.5 Control System Configuration 15.5.6 Regulatory Control Tuning 15.6 Higher-Level Multivariable Control and Optimization Applications 15.7 Online Calculations/Equipment Health Monitoring 15.7.1 Fired Heater Radiant Section Duty 15.7.2 Heat Exchanger Duty 15.7.2.1 No Phase Change 15.7.2.2 Condensing or Boiling 15.7.3 Distillation Column Pressure-Compensated Temperature 15.7.4 Distillation Column Approach to Flooding 15.7.5 Pump/Compressor/Turbine Efficiency and Vibration 15.7.6 Compressor Efficiency 15.7.7 Turbine Efficiency 15.7.8 Pump Efficiency 15.8 Smart Sensors/Inferential Calculations 15.9 Multivariable, Optimal Predictive Control (MPC) 15.9.1 Using Dynamic Simulation for Developing MPC Models 15.9.2 Closing Remarks on Model-Predictive Control (MPC) 15.10 Closed-Loop, Real-Time, Optimization (CLRTO) 15.10.1 Open-Equation Modeling for a Counter-Flow Heat Exchanger 15.10.2 Building Successful Plant-Wide CLRTO Applications 15.10.3 Challenges in Rigorous Chemical Reactor Modeling 15.11 Planning and Scheduling Optimization 15.12 Intelligent Alarm Management 15.13 Emergency Shutdown Systems (ESD) 15.14 Location of Process Control Rooms References Index