دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: ROBERT W MAKSIMOVIC DRAGAN ERICKSON
سری:
ISBN (شابک) : 9783030438791, 3030438791
ناشر: SPRINGER NATURE
سال نشر: 2020
تعداد صفحات: 1081
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 63 مگابایت
در صورت تبدیل فایل کتاب FUNDAMENTALS OF POWER ELECTRONICS. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی برق قدرت. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مبانی الکترونیک قدرت، ویرایش سوم، یک متن و کتاب مرجع به روز و معتبر در زمینه الکترونیک قدرت است. این نسخه جدید هدف و فلسفه اصلی تمرکز بر اصول اساسی، مدلها و الزامات فنی مورد نیاز برای طراحی سیستمهای الکترونیک قدرت عملی را حفظ میکند و در عین حال مواد جدید زیادی را اضافه میکند. ویژگی های بهبود یافته این نسخه جدید عبارتند از: مطالب جدید در مورد مکانیسم های تلفات سوئیچینگ و مدل سازی آنها. دستگاه های نیمه هادی باندگپ گسترده؛ درمان دقیق تر میانگین گیری؛ توضیح معیار پایداری نایکیست ادغام مدل Tan و Middlebrook برای کنترل برنامه ریزی شده فعلی. فصل جدید در کنترل دیجیتال مبدل های سوئیچینگ. فصول جدید عمده در مورد تکنیک های پیشرفته تجزیه و تحلیل طراحی گرا از جمله بازخورد و قضایای اضافی. کنترل جریان متوسط؛ مواد جدید در طراحی فیلتر ورودی؛ درمان جدید مدل سازی سوئیچ متوسط، شبیه سازی، و توان غیر مستقیم. و اثرات نمونه برداری در DCM، CPM، و کنترل دیجیتال. مبانی الکترونیک قدرت، ویرایش سوم، برای استفاده در دوره های مقدماتی الکترونیک قدرت و زمینه های مرتبط برای دانشجویان ارشد و دانشجویان سال اول کارشناسی ارشد علاقه مند به مدارهای مبدل و الکترونیک، سیستم های کنترل، و سیستم های مغناطیسی و قدرت در نظر گرفته شده است. همچنین برای متخصصانی که در الکترونیک قدرت، تبدیل نیرو و الکترونیک آنالوگ و دیجیتال کار می کنند، مرجع ارزشمندی خواهد بود.
Fundamentals of Power Electronics, Third Edition, is an up-to-date and authoritative text and reference book on power electronics. This new edition retains the original objective and philosophy of focusing on the fundamental principles, models, and technical requirements needed for designing practical power electronic systems while adding a wealth of new material. Improved features of this new edition include: new material on switching loss mechanisms and their modeling; wide bandgap semiconductor devices; a more rigorous treatment of averaging; explanation of the Nyquist stability criterion; incorporation of the Tan and Middlebrook model for current programmed control; a new chapter on digital control of switching converters; major new chapters on advanced techniques of design-oriented analysis including feedback and extra-element theorems; average current control; new material on input filter design; new treatment of averaged switch modeling, simulation, and indirect power; and sampling effects in DCM, CPM, and digital control. Fundamentals of Power Electronics, Third Edition, is intended for use in introductory power electronics courses and related fields for both senior undergraduates and first-year graduate students interested in converter circuits and electronics, control systems, and magnetic and power systems. It will also be an invaluable reference for professionals working in power electronics, power conversion, and analog and digital electronics.
Preface Contents 1 Introduction 1.1 Introduction to Power Processing 1.2 Several Applications of Power Electronics 1.3 Elements of Power Electronics Part I Converters in Equilibrium 2 Principles of Steady-State Converter Analysis 2.1 Introduction 2.2 Volt-Second and Charge Balance, Small-Ripple Approximation 2.3 Boost Converter Example 2.4 Ćuk Converter Example 2.5 Estimating the Output Voltage Ripple in Converters Containing Two-Pole Low-Pass Filters 2.6 Summary of Key Points Problems 3 Steady-State Equivalent Circuit Modeling, Losses, and Efficiency 3.1 The DC Transformer Model 3.2 Inclusion of Inductor Copper Loss 3.3 Construction of Equivalent Circuit Model 3.3.1 Inductor Voltage Equation 3.3.2 Capacitor Current Equation 3.3.3 Complete Circuit Model 3.3.4 Efficiency 3.4 How to Obtain the Input Port of the Model 3.5 Example: Inclusion of Semiconductor Conduction Losses in the Boost Converter Model 3.6 Summary of Key Points Problems 4 Switch Realization 4.1 Switch Applications 4.1.1 Single-Quadrant Switches 4.1.2 Current-Bidirectional Two-Quadrant Switches 4.1.3 Voltage-Bidirectional Two-Quadrant Switches 4.1.4 Four-Quadrant Switches 4.1.5 Synchronous Rectifiers 4.2 Introduction to Power Semiconductors 4.2.1 Breakdown Voltage, Forward Voltage, and Switching Speed 4.2.2 Transistor Switching Loss with Clamped Inductive Load 4.3 The Power Diode 4.3.1 Introduction to Power Diodes 4.3.2 Discussion: Power Diodes 4.3.3 Modeling Diode-Induced Switching Loss 4.3.4 Boost Converter Example 4.4 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) 4.4.1 Introduction to the Power MOSFET 4.4.2 Wide-Bandgap FETs 4.4.3 MOSFET Gate Drivers 4.5 Minority-Carrier Transistors 4.5.1 Bipolar Junction Transistor (BJT) 4.5.2 Insulated-Gate Bipolar Transistor (IGBT) 4.5.3 Thyristors (SCR, GTO) 4.6 Additional Sources of Switching Loss 4.6.1 Device Capacitances, and Leakage, Package, and Stray Inductances 4.6.2 Inducing Switching Loss in Other Elements 4.6.3 Efficiency vs. Switching Frequency 4.7 Summary of Key Points Problems 5 The Discontinuous Conduction Mode 5.1 Origin of the Discontinuous Conduction Mode, and Mode Boundary 5.2 Analysis of the Conversion Ratio M(D,K) 5.3 Boost Converter Example 5.4 Summary of Results and Key Points Problems 6 Converter Circuits 6.1 Circuit Manipulations 6.1.1 Inversion of Source and Load 6.1.2 Cascade Connection of Converters 6.1.3 Rotation of Three-Terminal Cell 6.1.4 Differential Connection of the Load 6.2 A Short List of Converters 6.3 Transformer Isolation 6.3.1 Full-Bridge and Half-Bridge Isolated Buck Converters 6.3.2 Forward Converter 6.3.3 Push-Pull Isolated Buck Converter 6.3.4 Flyback Converter 6.3.5 Boost-Derived Isolated Converters 6.3.6 Isolated Versions of the SEPIC and the Ćuk Converter 6.4 Summary of Key Points Problems Part II Converter Dynamics and Control 7 AC Equivalent Circuit Modeling 7.1 Introduction 7.2 The Basic AC Modeling Approach 7.2.1 Averaging the Inductor and Capacitor Waveforms 7.2.2 The Average Inductor Voltage and the Small-Ripple Approximation 7.2.3 Discussion of the Averaging Approximation 7.2.4 Averaging the Capacitor Waveforms 7.2.5 The Average Input Current 7.2.6 Perturbation and Linearization 7.2.7 Construction of the Small-Signal Equivalent Circuit Model 7.2.8 Discussion of the Perturbation and Linearization Step 7.2.9 Results for Several Basic Converters 7.2.10 Example: A Nonideal Flyback Converter 7.3 Modeling the Pulse-Width Modulator 7.4 The Canonical Circuit Model 7.4.1 Development of the Canonical Circuit Model 7.4.2 Example: Manipulation of the Buck–Boost Converter Model into Canonical Form 7.4.3 Canonical Circuit Parameter Values for Some Common Converters 7.5 State-Space Averaging 7.5.1 The State Equations of a Network 7.5.2 The Basic State-Space Averaged Model 7.5.3 Discussion of the State-Space Averaging Result 7.5.4 Example: State-Space Averaging of a Nonideal Buck–Boost Converter 7.5.5 Example: State-Space Averaging of a Boost Converter with ESR 7.6 Summary of Key Points Problems 8 Converter Transfer Functions 8.1 Review of Bode Plots 8.1.1 Single-Pole Response 8.1.2 Single Zero Response 8.1.3 Right Half-Plane Zero 8.1.4 Frequency Inversion 8.1.5 Combinations 8.1.6 Quadratic Pole Response: Resonance 8.1.7 The Low-Q Approximation 8.1.8 The High-Q Approximation 8.1.9 Approximate Roots of an Arbitrary-Degree Polynomial 8.2 Analysis of Converter Transfer Functions 8.2.1 Example: Transfer Functions of the Buck–Boost Converter 8.2.2 Transfer Functions of Some Basic CCM Converters 8.2.3 Physical Origins of the RHP Zero in Converters 8.3 Graphical Construction of Impedances and Transfer Functions 8.3.1 Series Impedances: Addition of Asymptotes 8.3.2 Series Resonant Circuit Example 8.3.3 Parallel Impedances: Inverse Addition of Asymptotes 8.3.4 Parallel Resonant Circuit Example 8.3.5 Voltage Divider Transfer Functions: Division of Asymptotes 8.4 Graphical Construction of Converter Transfer Functions 8.5 Measurement of AC Transfer Functions and Impedances 8.6 Summary of Key Points Problems 9 Controller Design 9.1 Introduction 9.2 Effect of Negative Feedback on the Network Transfer Functions 9.2.1 Feedback Reduces the Transfer Functions from Disturbances to the Output 9.2.2 Feedback Causes the Transfer Function from the Reference Input to the Output to Be Insensitive to Variations in the Gains in the Forward Path of the Loop 9.3 Construction of 1/(1+T) and T/(1+T) 9.4 Stability 9.4.1 The Phase Margin Test 9.4.2 The Nyquist Stability Criterion The Principle of the Argument The Nyquist Contour Stability Test A Basic Example Example 2: Three Crossover Frequencies Example 3: Integrator in Feedback Loop Summary: Nyquist Stability Criterion 9.4.3 The Relationship Between Phase Margin and Closed-Loop Damping Factor 9.4.4 Transient Response vs. Damping Factor 9.4.5 Load Step Response vs. Damping Factor 9.5 Regulator Design 9.5.1 Lead (PD) compensator 9.5.2 Lag (PI) Compensator 9.5.3 Combined (PID) Compensator 9.5.4 Design Example 9.6 Measurement of Loop Gains 9.6.1 Voltage Injection 9.6.2 Current Injection 9.6.3 Measurement of Unstable Systems 9.7 Summary of Key Points Problems Part III Magnetics 10 Basic Magnetics Theory 10.1 Review of Basic Magnetics 10.1.1 Basic Relationships 10.1.2 Magnetic Circuits 10.2 Transformer Modeling 10.2.1 The Ideal Transformer 10.2.2 The Magnetizing Inductance 10.2.3 Leakage Inductances 10.3 Loss Mechanisms in Magnetic Devices 10.3.1 Core Loss 10.3.2 Low-Frequency Copper Loss 10.4 Eddy Currents in Winding Conductors 10.4.1 Introduction to the Skin and Proximity Effects 10.4.2 Leakage Flux in Windings 10.4.3 Foil Windings and Layers 10.4.4 Power Loss in a Layer 10.4.5 Example: Power Loss in a Transformer Winding 10.4.6 Interleaving the Windings 10.4.7 PWM Waveform Harmonics 10.5 Several Types of Magnetic Devices, Their B–H Loops, and Core vs. Copper Loss 10.5.1 Filter Inductor 10.5.2 AC Inductor 10.5.3 Transformer 10.5.4 Coupled Inductor 10.5.5 Flyback Transformer 10.6 Summary of Key Points Problems 11 Inductor Design 11.1 Filter Inductor Design Constraints 11.1.1 Maximum Flux Density 11.1.2 Inductance 11.1.3 Winding Area 11.1.4 Winding Resistance 11.1.5 The Core Geometrical Constant Kg 11.2 The Kg Method: A First-Pass Design 11.3 Multiple-Winding Magnetics Design via the Kg Method 11.3.1 Window Area Allocation 11.3.2 Coupled Inductor Design Constraints 11.3.3 First-Pass Design Procedure 11.4 Examples 11.4.1 Coupled Inductor for a Two-Output Forward Converter 11.4.2 CCM Flyback Transformer 11.5 Summary of Key Points Problems 12 Transformer Design 12.1 Transformer Design: Basic Constraints 12.1.1 Core Loss 12.1.2 Flux Density 12.1.3 Copper Loss 12.1.4 Total Power Loss vs. Δ B 12.1.5 Optimum Flux Density 12.2 A First-Pass Transformer Design Procedure 12.2.1 Procedure 12.3 Examples 12.3.1 Example 1: Single-Output Isolated Ćuk Converter 12.3.2 Example 2: Multiple-Output Full-Bridge Buck Converter 12.4 AC Inductor Design 12.4.1 Outline of Derivation 12.4.2 First-Pass AC Inductor Design Procedure 12.5 Summary Problems Part IV Advanced Modeling, Analysis, and Control Techniques 13 Techniques of Design-Oriented Analysis: The Feedback Theorem 13.1 Introduction to Part IV 13.2 The Feedback Theorem 13.2.1 Basic Result 13.2.2 Derivation 13.3 Example: Op Amp PD Compensator Circuit 13.4 Example: Closed-Loop Regulator 13.5 Summary of Key Points Problems 14 Circuit Averaging, Averaged Switch Modeling, and Simulation 14.1 Circuit Averaging and Averaged Switch Modeling 14.1.1 Obtaining a Time-Invariant Circuit 14.1.2 Circuit Averaging 14.1.3 Perturbation and Linearization 14.1.4 Indirect Power 14.2 Additional Configurations of Switch Networks 14.3 Simulation of Averaged Circuit Models 14.3.1 Simulation Model of the Ideal CCM Averaged Switch Network 14.3.2 Averaged Switch Modeling and Simulation of Conduction Losses 14.3.3 Inclusion of Switch Conduction Losses in Simulations 14.3.4 Example: SEPIC DC Conversion Ratio and Efficiency 14.3.5 Example: Transient Response of a Buck–Boost Converter 14.4 Summary of Key Points Problems 15 Equivalent Circuit Modeling of the Discontinuous Conduction Mode 15.1 Introduction to DCM Converter Dynamics 15.2 DCM Averaged Switch Model 15.3 Small-Signal AC Modeling of the DCM Switch Network 15.3.1 Example: Control-to-Output Frequency Response of a DCM Boost Converter 15.4 Combined CCM/DCM Averaged Switch Simulation Model 15.4.1 Example: CCM/DCM SEPIC Frequency Responses 15.4.2 Example: Loop Gain and Closed-Loop Responses of a Buck Voltage Regulator 15.5 High-Frequency Dynamics of Converters in DCM 15.6 Summary of Key Points Problems 16 Techniques of Design-Oriented Analysis: Extra Element Theorems 16.1 Extra Element Theorem 16.1.1 Basic Result 16.1.2 Derivation 16.1.3 Discussion 16.2 EET Examples 16.2.1 A Simple Transfer Function 16.2.2 An Unmodeled Element 16.2.3 SEPIC Example 16.2.4 Damping the SEPIC Internal Resonances 16.3 The n-Extra Element Theorem 16.3.1 Introduction to the n-EET 16.3.2 Procedure for DC-Referenced Functions 16.4 n-EET Examples 16.4.1 Two-Section L–C Filter 16.4.2 Bridge-T Filter Example 16.5 Frequency Inversion 16.5.1 Example: Damped Input Filter 16.5.2 Other Special Cases Problems 17 Input Filter Design 17.1 Introduction 17.1.1 Conducted EMI 17.1.2 The Input Filter Design Problem 17.2 Effect of an Input Filter on Converter Transfer Functions 17.2.1 Modified Transfer Functions 17.2.2 Discussion 17.2.3 Impedance Inequalities 17.3 Buck Converter Example 17.3.1 Effect of Undamped Input Filter 17.3.2 Damping the Input Filter 17.4 Design of a Damped Input Filter 17.4.1 Rf–Cb Parallel Damping 17.4.2 Rf–Lb Parallel Damping 17.4.3 Rf–Lb Series Damping 17.4.4 Cascading Filter Sections 17.4.5 Example: Two Stage Input Filter 17.5 Stability Criteria 17.5.1 Modified Phase Margin 17.5.2 Closed-Loop Input Impedance Effect of input filter on closed-loop transfer functions Finding the closed-loop input admittance Yi = 1/ZDg Construction of Zi Determination of stability 17.5.3 Discussion 17.6 Summary of Key Points Problems 18 Current-Programmed Control 18.1 A Simple First-Order Model 18.1.1 Simple Model via Algebraic Approach: Buck–Boost Example 18.1.2 Averaged Switch Modeling 18.2 Oscillation for D > 0.5 18.3 A More Accurate Model 18.3.1 Current-Programmed Controller Model 18.3.2 Small-Signal Averaged Model 18.4 Current-Programmed Transfer Functions 18.4.1 Discussion 18.4.2 Current-Programmed Transfer Functions of the CCM Buck Converter 18.4.3 Results for Basic Converters 18.4.4 Addition of an Input Filter to a Current-Programmed Converter 18.5 Simulation of CPM Controlled Converters 18.5.1 Simulation Model for CPM Controlled Converters in CCM 18.5.2 Combined CCM/DCM Simulation Model 18.5.3 Simulation Example: Frequency Responses of a Buck Converter with Current-Programmed Control 18.6 Voltage Feedback Loop Around a Current-Programmed Converter 18.6.1 System Model 18.6.2 Design Example 18.7 High-Frequency Dynamics of Current-Programmed Converters 18.7.1 Sampled-Data Model 18.7.2 First-Order Approximation 18.7.3 Second-Order Approximation 18.8 Discontinuous Conduction Mode 18.9 Average Current-Mode Control 18.9.1 System Model and Transfer Functions 18.9.2 Design Example: ACM Controlled Boost Converter 18.10 Summary of Key Points Problems 19 Digital Control of Switched-Mode Power Converters 19.1 Digital Control Loop 19.1.1 A/D and DPWM Quantization Analog-to-Digital Conversion Digital Pulse-Width Modulation Ideal Quantization Characteristics 19.1.2 Sampling and Delays in the Control Loop 19.2 Introduction to Discrete-Time Systems 19.2.1 Integration in Continuous Time and in Discrete Time 19.2.2 z-Transform and Frequency Responses of Discrete-Time Systems 19.2.3 Continuous Time to Discrete Time Mapping 19.3 Discrete-Time Compensator Design Example 19.3.1 Design Procedure 19.3.2 Design Example 19.4 Digital Controller Implementation 19.4.1 Discrete-Time Compensator Realization 19.4.2 Quantization Effects, Digital Pulse-Width Modulators and A/D Converters Digital Pulse-Width Modulators A/D Converters 19.5 Summary of Key Points Problems Part V Modern Rectifiers and Power System Harmonics 20 Power and Harmonics in Nonsinusoidal Systems 20.1 Average Power 20.2 Root-Mean-Square (RMS) Value of a Waveform 20.3 Power Factor 20.3.1 Linear Resistive Load, Nonsinusoidal Voltage 20.3.2 Nonlinear Dynamic Load, Sinusoidal Voltage 20.4 Power Phasors in Sinusoidal Systems 20.5 Harmonic Currents in Three-Phase Systems 20.5.1 Harmonic Currents in Three-Phase Four-Wire Networks 20.5.2 Harmonic Currents in Three-Phase Three-Wire Networks 20.5.3 Harmonic Current Flow in Power Factor Correction Capacitors Problems 21 Pulse-Width Modulated Rectifiers 21.1 Properties of the Ideal Rectifier 21.2 Realization of a Near-Ideal Rectifier 21.2.1 CCM Boost Converter 21.2.2 Simulation Example: DCM Boost Rectifier 21.2.3 DCM Flyback Converter 21.3 Control of the Current Waveform 21.3.1 Average Current Control 21.3.2 Current-Programmed Control 21.3.3 Critical Conduction Mode and Hysteretic Control 21.3.4 Nonlinear Carrier Control 21.4 Single-Phase Converter Systems Incorporating Ideal Rectifiers 21.4.1 Energy Storage 21.4.2 Modeling the Outer Low-Bandwidth Control System 21.5 RMS Values of Rectifier Waveforms 21.5.1 Boost Rectifier Example 21.5.2 Comparison of Single-Phase Rectifier Topologies 21.6 Modeling Losses and Efficiency in CCM High-Quality Rectifiers 21.6.1 Expression for Controller Duty Cycle d(t) 21.6.2 Expression for the DC Load Current 21.6.3 Solution for Converter Efficiency 21.6.4 Design Example 21.7 Ideal Three-Phase Rectifiers 21.8 Summary of Key Points Problems Part VI Resonant Converters 22 Resonant Conversion 22.1 Sinusoidal Analysis of Resonant Converters 22.1.1 Controlled Switch Network Model 22.1.2 Modeling the Rectifier and Capacitive Filter Networks 22.1.3 Resonant Tank Network 22.1.4 Solution of Converter Voltage Conversion Ratio M=V/Vg 22.2 Examples 22.2.1 Series Resonant DC–DC Converter Example 22.2.2 Subharmonic Modes of the Series Resonant Converter 22.2.3 Parallel Resonant DC–DC Converter Example 22.3 Soft Switching 22.3.1 Operation of the Full Bridge Below Resonance: Zero-Current Switching 22.3.2 Operation of the Full-Bridge Above Resonance: Zero-Voltage Switching 22.4 Load-Dependent Properties of Resonant Converters 22.4.1 Inverter Output Characteristics 22.4.2 Dependence of Transistor Current on Load 22.4.3 Dependence of the ZVS/ZCS Boundary on Load Resistance 22.4.4 Another Example 22.4.5 LLC Example 22.4.6 Results for Basic Tank Networks 22.5 Exact Characteristics of the Series and Parallel Resonant Converters 22.5.1 Series Resonant Converter 22.5.2 Parallel Resonant Converter 22.6 Summary of Key Points Problems 23 Soft Switching 23.1 Soft-Switching Mechanisms of Semiconductor Devices 23.1.1 Diode Switching 23.1.2 MOSFET Switching 23.1.3 IGBT Switching 23.2 The Zero-Current-Switching Quasi-Resonant Switch Cell 23.2.1 Waveforms of the Half-Wave ZCS Quasi-Resonant Switch Cell 23.2.2 The Average Terminal Waveforms 23.2.3 The Full-Wave ZCS Quasi-Resonant Switch Cell 23.3 Resonant Switch Topologies 23.3.1 The Zero-Voltage-Switching Quasi-Resonant Switch 23.3.2 The Zero-Voltage-Switching Multiresonant Switch 23.3.3 Quasi-Square-Wave Resonant Switches 23.4 Soft Switching in PWM Converters 23.4.1 The Zero-Voltage Transition Full-Bridge Converter 23.4.2 The Auxiliary Switch Approach 23.4.3 Auxiliary Resonant Commutated Pole 23.5 Summary of Key Points Problems Appendices RMS Values of Commonly Observed Converter Waveforms A.1 Some Common Waveforms A.2 General Piecewise Waveform Magnetics Design Tables B.1 Pot Core Data B.2 EE Core Data B.3 EC Core Data B.4 ETD Core Data B.5 PQ Core Data B.6 American Wire Gauge Data References Index