دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Paperback
نویسندگان: Ramamurti Shankar
سری:
ISBN (شابک) : 0300212364, 9780300212365
ناشر: Yale University Press
سال نشر: 2016
تعداد صفحات: 563
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 23 مگابایت
در صورت تبدیل فایل کتاب Fundamentals of Physics II: Electromagnetism, Optics, and Quantum Mechanics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی فیزیک II: الکترومغناطیس، اپتیک و مکانیک کوانتومی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
R. Shankar، یک فیزیکدان معروف و مربی بسیار مسری، جزو اولین
کسانی بود که دوره ای را از طریق برنامه نوآورانه دوره Open Yale
ارائه داد. سخنرانی های ویدیویی آنلاین محبوب او در مورد فیزیک
مقدماتی بیش از یک میلیون بار مشاهده شده است. در این کتاب دوم بر
اساس دوره آنلاین ییل، شانکار مفاهیم اساسی، از جمله
الکترومغناطیس، اپتیک، و مکانیک کوانتومی را توضیح میدهد.
کتاب از سادهترین سطح شروع میشود، اصول اولیه را توسعه میدهد،
و اصول را تقویت میکند، و اطمینان حاصل میکند که یک پایه محکم
در اصول و روش های فیزیک. این یک مقدمه ایده آل برای دانشجویان در
سطح کالج از فیزیک، شیمی، و مهندسی فراهم می کند. برای دانشجویان
با انگیزه فیزیک AP؛ و برای خوانندگان عمومی علاقه مند به پیشرفت
در علوم.
R. Shankar, a well-known physicist and contagiously
enthusiastic educator, was among the first to offer a course
through the innovative Open Yale Course program. His popular
online video lectures on introductory physics have been viewed
over a million times. In this second book based on his online
Yale course, Shankar explains essential concepts, including
electromagnetism, optics, and quantum mechanics.
The book begins at the simplest level, develops the basics, and
reinforces fundamentals, ensuring a solid foundation in the
principles and methods of physics. It provides an ideal
introduction for college-level students of physics, chemistry,
and engineering; for motivated AP Physics students; and for
general readers interested in advances in the sciences.
Preface 1. Electrostatics I 1.1. Review of F = ma 1.2. Enter electricity 1.3. Coulomb’s law 1.4. Properties of charge 1.4.1. Superposition principle 1.5. Verifying Coulomb’s law 1.6. The ratio of gravitational to electric forces 1.7. Coulomb’s law for continuous charge density 2. The Electric Field 2.1. Review of key ideas 2.2. Digression on nuclear forces 2.3. The electric field E 2.4. Visualizing the field 2.5. Field of a dipole 2.5.1. Far field of dipole: general case 2.6. Response to a field 2.6.1. Dipole in a uniform field 3. Gauss’s Law I 3.1. Field of an infinite line charge 3.2. Field of an infinite sheet of charge 3.3. Spherical charge distribution: Gauss’s law 3.4. Digression on the area vector dA 3.4.1. Composition of areas 3.4.2. An application of the area vector 3.5. Gauss’s law through pictures 3.5.1. Continuous charge density 4. Gauss’s Law II: Applications 4.1. Applications of Gauss’s law 4.2. Field inside a shell 4.3. Field of an infinite charged wire, redux 4.4. Field of an infinite plane, redux 4.5. Conductors 4.5.1. Field inside a perfect conductor is zero 4.5.2. The net charge on a conductor will reside at the surface 4.5.3. A conductor with a hole inside 4.5.4. Field on the surface of a conductor 5. The Coulomb Potential 5.1. Conservative forces and potential energy 5.2. Is the electrostatic field conservative? 5.3. Path independence through pictures 5.4. Potential and field of a dipole 6. Conductors and Capacitors 6.1. Cases where computing V from E is easier 6.2. Visualizing V 6.3. Equipotentials 6.4. Method of images 6.4.1. Proof of uniqueness (optional section) 6.4.2. Additional properties of the potential V(r) 6.5. Capacitors 6.6. Energy stored in a capacitor 6.7. Energy of a charge distribution 7. Circuits and Currents 7.1. Energy in the electric field 7.2. Circuits and conductivity 7.3. Circuits 7.4. The battery and the EMF 7.5. The RC circuit with a battery 7.6. Miscellaneous circuits 8. Magnetism I 8.1. Experiments pointing to magnetism 8.2. Examples of the Lorentz force, the cyclotron 8.3. Lorentz force on current-carrying wires 8.4. The magnetic dipole 8.5. The DC motor 9. Magnetism II: Biot-Savart Law 9.1. Practice with Biot-Savart: field of a loop 9.2. Microscopic description of a bar magnet 9.3. Magnetic field of an infinite wire 9.4. Ampère’s law 9.5. Maxwell’s equations (static case) 10. Ampère II, Faraday, and Lenz 10.1. Field of an infinite wire, redux 10.2. Field of a solenoid 10.3. Faraday and Lenz 10.4. Optional digression on Faraday’s law 11. More Faraday 11.1. Betatron 11.2. Generators 11.3. Inductance 11.4. Mutual inductance 11.5. Self-inductance 11.6. Energy in the magnetic field 12. AC Circuits 12.1. Review of inductors 12.2. The LC circuit 12.2.1. Driven LC circuit 12.3. The LCR circuit 12.3.1. Review of complex numbers 12.3.2. Solving the LCR equation 12.3.3. Visualizing Z 12.4. Complex form of Ohm’s law 13. LCR Circuits and Displacement Current 13.1. Analysis of LCR results 13.1.1. Transients and the complementary solution 13.2. Power of the complex numbers 13.3. Displacement current 14. Electromagnetic Waves 14.1. The wave equation 14.2. Restricted Maxwell equations in vacuum 14.2.1. Maxwell equations involving infinitesimal cubes 14.2.2. Maxwell equations involving infinitesimal loops 14.3. The wave! 14.4. Sinusoidal solution to the wave equation 14.5. Energy in the electromagnetic wave 14.6. Origin of electromagnetic waves 14.7. Maxwell equations—the general case (optional) 14.7.1. Maxwell equations involving infinitesimal cubes 14.7.2. Maxwell equations involving infinitesimal loops 14.7.3. Consequences for the restricted E and B 14.8. From microscopic to macroscopic (optional) 14.8.1. Maxwell equations involving cubes 14.8.2. Maxwell equations involving loops 15. Electromagnetism and Relativity 15.1. Magnetism from Coulomb’s law and relativity 15.2. Relativistic invariance of electrodynamics 15.3. Review of Lorentz transformations 15.3.1. Implications for Newtonian mechanics 15.4. Scalar and vector fields 15.5. The derivative operator 15.6. Lorentz scalars and vectors 15.7. The four-current J 15.7.1. Charge conservation and the four-current J 15.8. The four-potential A 15.8.1. Gauge invariance 15.9. Wave equation for the four-vector A 15.9.1. Why work with V and A? 15.10. The electromagnetic tensor 15.10.1. Tensors 15.10.2. The electromagnetic field tensor 16. Optics I: Geometric Optics Revisited 16.1. Geometric or ray optics 16.2. Brief history of c 16.3. Some highlights of geometric optics 16.4. The law of reflection from Fermat’s principle 16.5. Snell’s law from Fermat’s principle 16.6. Reflection off a curved surface by Fermat 16.7. Elliptical mirrors and Fermat’s principle 16.8. Parabolic mirrors 17. Optics II: More Mirrors and Lenses 17.1. Spherical approximations to parabolic mirrors 17.2. Image formation: geometric optics 17.2.1. A midlife crisis 17.3. Image formation by Fermat’s principle 17.4. Tricky cases 17.4.1. Fermat’s principle for virtual focal points 17.4.2. Ray optics for virtual images 17.5. Lenses à la Fermat 17.6. Principle of least action 17.7. The eye 18. Wave Theory of Light 18.1. Interference of waves 18.2. Adding waves using real numbers 18.3. Adding waves with complex numbers 18.4. Analysis of interference 18.5. Diffraction grating 18.6. Single-slit diffraction 18.7. Understanding reflection and crystal diffraction 18.8. Light incident on an oil slick 18.8.1. Normal incidence 18.8.2. Oblique incidence 19. Quantum Mechanics: The Main Experiment 19.1. Double-slit experiment with light 19.2. Trouble with Maxwell 19.3. Digression on photons 19.3.1. Photoelectric effect 19.3.2. Compton effect 19.4. Matter waves 19.5. Photons versus electrons 19.6. The Heisenberg uncertainty principle 19.6.1. There are no states of well-defined position and momentum 19.6.2. Heisenberg microscope 19.7. Let there be light 19.8. The wave function ψ 19.9. Collapse of the wave function 19.10. Summary 20. The Wave Function and Its Interpretation 20.1. Probability in classical and quantum mechanics 20.2. Getting to know ψ 20.3. Statistical concepts: mean and uncertainty 21. Quantization and Measurement 21.1. More on momentum states 21.2. Single-valuedness and quantization of momentum 21.2.1. Quantization 21.2.2. The integral of ψp(x) 21.3. Measurement postulate: momentum 21.3.1. An example solvable by inspection 21.3.2. Using a normalized ψ 21.4. Finding A(p) by computation 21.5. More on Fourier’s theorems 21.6. Measurement postulate: general 21.7. More than one variable 22. States of Definite Energy 22.1. Free particle on a ring 22.1.1. Analysis of energy levels: degeneracy 22.2. Thinking inside the box 22.2.1. Particle in a well 22.2.2. The box: an exact solution 22.3. Energy measurement in the box 23. Scattering and Dynamics 23.1. Quantum scattering 23.1.1. Scattering for E > V0 23.1.2. Scattering for E < V0 23.2. Tunneling 23.3. Quantum dynamics 23.3.1. A solution of the time-dependent Schrödinger equation 23.3.2. Derivation of the particular solution ψE(x, t) 23.4. Special properties of the product solution 23.5. General solution for time evolution 23.5.1. Time evolution: a more complicated example 24. Summary and Outlook 24.1. Postulates: first pass 24.2. Refining the postulates 24.2.1. Toward a compact set of postulates 24.2.2. Eigenvalue problem 24.2.3. The Dirac delta function and the operator X 24.3. Postulates: final 24.4. Many particles, bosons, and fermions 24.4.1. Identical versus indistinguishable 24.4.2. Implications for atomic structure 24.5. Energy-time uncertainty principle 24.6. What next? Constants Index