ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fundamentals of Modern Manufacturing: Materials, Processes, and Systems

دانلود کتاب مبانی تولید مدرن: مواد، فرآیندها و سیستم ها

Fundamentals of Modern Manufacturing: Materials, Processes, and Systems

مشخصات کتاب

Fundamentals of Modern Manufacturing: Materials, Processes, and Systems

ویرایش: 6 
نویسندگان:   
سری:  
ISBN (شابک) : 1119128803 
ناشر:  
سال نشر: 2016 
تعداد صفحات: 951 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 70 مگابایت 

قیمت کتاب (تومان) : 35,000



کلمات کلیدی مربوط به کتاب مبانی تولید مدرن: مواد، فرآیندها و سیستم ها: مهندسی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Fundamentals of Modern Manufacturing: Materials, Processes, and Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی تولید مدرن: مواد، فرآیندها و سیستم ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مبانی تولید مدرن: مواد، فرآیندها و سیستم ها

مبانی تولید مدرن: مواد، فرآیندها و سیستم‌ها، ویرایش ششم، برای اولین دوره یا توالی دو دوره‌ای در تولید در سطح متوسطه در برنامه‌های درسی مهندسی مکانیک، صنعتی و ساخت‌وساز طراحی شده است. مانند نسخه‌های قبلی، هدف نویسنده ارائه رویکردی مدرن و کمی از تولید است. رویکرد مدرن کتاب مبتنی بر پوشش متعادل مواد اولیه مهندسی، شامل فرآیندهای تولید اخیراً توسعه‌یافته و پوشش جامع فناوری‌های تولید الکترونیک است. تمرکز کمی متن در تأکید آن بر علم ساخت و ساز و استفاده بیشتر آن از مدل‌های ریاضی و مسائل کمی انتهای فصل نشان داده می‌شود.


توضیحاتی درمورد کتاب به خارجی

Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, 6th Edition, is designed for a first course or two-course sequence in Manufacturing at the junior level in Mechanical, Industrial, and Manufacturing Engineering curricula. As in preceding editions, the author's objective is to provide a treatment of manufacturing that is modern and quantitative. The book's modern approach is based on balanced coverage of the basic engineering materials, the inclusion of recently developed manufacturing processes and comprehensive coverage of electronics manufacturing technologies. The quantitative focus of the text is displayed in its emphasis on manufacturing science and its greater use of mathematical models and quantitative end-of-chapter problems.



فهرست مطالب

Cover
Title Page
Copyright
Preface
Acknowledgements
Contents
1: Introduction and Overview of Manufacturing
	1.1 What Is Manufacturing?
		1.1.1 Manufacturing Defined
		1.1.2 Manufacturing Industries and Products
		1.1.3 Manufacturing Capability
	1.2 Materials in Manufacturing
		1.2.1 Metals
		1.2.2 Ceramics
		1.2.3 Polymers
		1.2.4 Composites
	1.3 Manufacturing Processes
		1.3.1 Processing Operations
		1.3.2 Assembly Operations
		1.3.3 Production Machines and Tooling
	1.4 Production Systems
		1.4.1 Production Facilities
		1.4.2 Manufacturing Support Systems
	1.5 Manufacturing Economics
		1.5.1 Production Cycle Time Analysis
		1.5.2 Manufacturing Cost Models
Part I: Material Properties and Product Attributes
	2: The Nature of Materials
		2.1 Atomic Structure and the Elements
		2.2 Bonding between Atoms and Molecules
		2.3 Crystalline Structures
			2.3.1 Types of Crystal Structures
			2.3.2 Imperfections in Crystals
			2.3.3 Deformation in Metallic Crystals
			2.3.4 Grains and Grain Boundaries in Metals
		2.4 Noncrystalline (Amorphous) Structures
		2.5 Engineering Materials
	3: Mechanical Properties of Materials
		3.1 Stress–Strain Relationships
			3.1.1 Tensile Properties
			3.1.2 Compression Properties
			3.1.3 Bending and Testing of Brittle Materials
			3.1.4 Shear Properties
		3.2 Hardness
			3.2.1 Hardness Tests
			3.2.2 Hardness of Various Materials
		3.3 Effect of Temperature on Properties
		3.4 Fluid Properties
		3.5 Viscoelastic Behavior of Polymers
	4: Physical Properties of Materials
		4.1 Volumetric and Melting Properties
			4.1.1 Density
			4.1.2 Thermal Expansion
			4.1.3 Melting Characteristics
		4.2 Thermal Properties
			4.2.1 Specific Heat and Thermal Conductivity
			4.2.2 Thermal Properties in Manufacturing
		4.3 Mass Diffusion
		4.4 Electrical Properties
			4.4.1 Resistivity and Conductivity
			4.4.2 Classes of Materials by Electrical Properties
		4.5 Electrochemical Processes
	5: Dimensions, Surfaces, and Their Measurement
		5.1 Dimensions, Tolerances, and Related Attributes
			5.1.1 Dimensions and Tolerances
			5.1.2 Other Geometric Attributes
		5.2 Conventional Measuring Instruments and Gages
			5.2.1 Precision Gage Blocks
			5.2.2 Measuring Instruments for Linear Dimensions
			5.2.3 Comparative Instruments
			5.2.4 Fixed Gages
			5.2.5 Angular Measurements
		5.3 Surfaces
			5.3.1 Characteristics of Surfaces
			5.3.2 Surface Texture
			5.3.3 Surface Integrity
		5.4 Measurement of Surfaces
			5.4.1 Measurement of Surface Roughness
			5.4.2 Evaluation of Surface Integrity
		5.5 Effect of Manufacturing Processes
Part II: Engineering Materials
	6: Metals
		6.1 Alloys and Phase Diagrams
			6.1.1 Alloys
			6.1.2 Phase Diagrams
		6.2 Ferrous Metals
			6.2.1 The Iron–Carbon Phase Diagram
			6.2.2 Iron and Steel Production
			6.2.3 Steels
			6.2.4 Cast Irons
		6.3 Nonferrous Metals
			6.3.1 Aluminum and Its Alloys
			6.3.2 Magnesium and Its Alloys
			6.3.3 Copper and Its Alloys
			6.3.4 Nickel and Its Alloys
			6.3.5 Titanium and Its Alloys
			6.3.6 Zinc and Its Alloys
			6.3.7 Lead and Tin
			6.3.8 Refractory Metals
			6.3.9 Precious Metals
		6.4 Superalloys
	7: Ceramics
		7.1 Structure and Properties of Ceramics
			7.1.1 Mechanical Properties
			7.1.2 Physical Properties
		7.2 Traditional Ceramics
			7.2.1 Raw Materials
			7.2.2 Traditional Ceramic Products
		7.3 New Ceramics
			7.3.1 Oxide Ceramics
			7.3.2 Carbides
			7.3.3 Nitrides
		7.4 Glass
			7.4.1 Chemistry and Properties of Glass
			7.4.2 Glass Products
			7.4.3 Glass-Ceramics
		7.5 Some Important Elements Related to Ceramics
			7.5.1 Carbon
			7.5.2 Silicon
			7.5.3 Boron
	8: Polymers
		8.1 Fundamentals of Polymer Science and Technology
			8.1.1 Polymerization
			8.1.2 Polymer Structures and Copolymers
			8.1.3 Crystallinity
			8.1.4 Thermal Behavior of Polymers
			8.1.5 Additives
		8.2 Thermoplastic Polymers
			8.2.1 Properties of Thermoplastic Polymers
			8.2.2 Important Commercial Thermoplastics
		8.3 Thermosetting Polymers
			8.3.1 General Properties and Characteristics
			8.3.2 Important Thermosetting Polymers
		8.4 Elastomers
			8.4.1 Characteristics of Elastomers
			8.4.2 Natural Rubber
			8.4.3 Synthetic Rubbers
		8.5 Polymer Recycling and Biodegradability
			8.5.1 Polymer Recycling
			8.5.2 Biodegradable Polymers
	9: Composite Materials
		9.1 Technology and Classification of Composite Materials
			9.1.1 Components in a Composite Material
			9.1.2 The Reinforcing Phase
			9.1.3 Properties of Composite Materials
			9.1.4 Other Composite Structures
		9.2 Metal Matrix Composites
			9.2.1 Cermets
			9.2.2 Fiber-Reinforced Metal Matrix Composites
		9.3 Ceramic Matrix Composites
		9.4 Polymer Matrix Composites
			9.4.1 Fiber-Reinforced Polymers
			9.4.2 Other Polymer Matrix Composites
Part III: Solidification Processes
	10: Fundamentals of Metal Casting
		10.1 Overview of Casting Technology
			10.1.1 Casting Processes
			10.1.2 Sand-Casting Molds
		10.2 Heating and Pouring
			10.2.1 Heating the Metal
			10.2.2 Pouring the Molten Metal
			10.2.3 Engineering Analysis of Pouring
			10.2.4 Fluidity
		10.3 Solidification and Cooling
			10.3.1 Solidification of Metals
			10.3.2 Solidification Time
			10.3.3 Shrinkage
			10.3.4 Directional Solidification
			10.3.5 Riser Design
	11: Metal Casting Processes
		11.1 Sand Casting
			11.1.1 Patterns and Cores
			11.1.2 Molds and Mold Making
			11.1.3 The Casting Operation
		11.2 Other Expendable-Mold Casting Processes
			11.2.1 Shell Molding
			11.2.2 Expanded-Polystyrene Process
			11.2.3 Investment Casting
			11.2.4 Plaster-Mold and Ceramic-Mold Casting
		11.3 Permanent-Mold Casting Processes
			11.3.1 The Basic Permanent-Mold Process
			11.3.2 Variations of Permanent-Mold Casting
			11.3.3 Die Casting
			11.3.4 Squeeze Casting and Semisolid Metal Casting
			11.3.5 Centrifugal Casting
		11.4 Foundry Practice
			11.4.1 Furnaces
			11.4.2 Pouring, Cleaning, and Heat Treatment
		11.5 Casting Quality
		11.6 Castability and Casting Economics
			11.6.1 Casting Metals
			11.6.2 Casting Economics
		11.7 Product Design Considerations
	12: Glassworking
		12.1 Raw Materials Preparation and Melting
		12.2 Shaping Processes in Glassworking
			12.2.1 Shaping of Piece Ware
			12.2.2 Shaping of Flat and Tubular Glass
			12.2.3 Forming of Glass Fibers
		12.3 Heat Treatment and Finishing
			12.3.1 Heat Treatment
			12.3.2 Finishing
		12.4 Product Design Considerations
	13: Shaping Processes for Plastics
		13.1 Properties of Polymer Melts
		13.2 Extrusion
			13.2.1 Process and Equipment
			13.2.2 Analysis of Extrusion
			13.2.3 Die Configurations and Extruded Products
			13.2.4 Defects in Extrusion
		13.3 Production of Sheet and Film
		13.4 Fiber and Filament Production (Spinning)
		13.5 Coating Processes
		13.6 Injection Molding
			13.6.1 Process and Equipment
			13.6.2 The Mold
			13.6.3 Injection-Molding Machines
			13.6.4 Shrinkage and Defects in Injection Molding
			13.6.5 Other Injection-Molding Processes
		13.7 Compression and Transfer Molding
			13.7.1 Compression Molding
			13.7.2 Transfer Molding
		13.8 Blow Molding and Rotational Molding
			13.8.1 Blow Molding
			13.8.2 Rotational Molding
		13.9 Thermoforming
		13.10 Casting
		13.11 Polymer Foam Processing and Forming
		13.12 Product Design Considerations
	14: Processing of Polymer Matrix Composites and Rubber
		14.1 Overview of PMC Processing
			14.1.1 Starting Materials for PMCs
			14.1.2 Combining Matrix and Reinforcement
		14.2 Open-Mold Processes
			14.2.1 Hand Lay-Up
			14.2.2 Spray-Up
			14.2.3 Automated Lay-Up
			14.2.4 Curing
		14.3 Closed-Mold Processes
			14.3.1 Compression-Molding PMC Processes
			14.3.2 Transfer-Molding PMC Processes
			14.3.3 Injection-Molding PMC Processes
		14.4 Other PMC Shaping Processes
			14.4.1 Filament Winding
			14.4.2 Pultrusion Processes
			14.4.3 Miscellaneous PMC Shaping Processes
		14.5 Rubber Processing and Shaping
			14.5.1 Production of Rubber
			14.5.2 Compounding and Mixing
			14.5.3 Shaping and Related Processes
			14.5.4 Vulcanization
			14.5.5 Processing of Thermoplastic Elastomers
		14.6 Manufacture of Tires and Other Rubber Products
			14.6.1 Tires
			14.6.2 Other Rubber Products
Part IV: Particulate Processing of Metals and Ceramics
	15: Powder Metallurgy
		15.1 Characterization of Engineering Powders
			15.1.1 Geometric Features
			15.1.2 Other Features
		15.2 Production of Metallic Powders
			15.2.1 Atomization
			15.2.2 Other Production Methods
		15.3 Conventional Pressing and Sintering
			15.3.1 Blending and Mixing of the Powders
			15.3.2 Compaction
			15.3.3 Sintering
			15.3.4 Secondary Operations
		15.4 Alternative Pressing and Sintering Techniques
			15.4.1 Isostatic Pressing
			15.4.2 Powder Injection Molding
			15.4.3 Powder Rolling, Extrusion, and Forging
			15.4.4 Liquid-Phase Sintering
		15.5 Materials and Products for Powder Metallurgy
		15.6 Design Considerations in Powder Metallurgy
	16: Processing of Ceramics and Cermets
		16.1 Processing of Traditional Ceramics
			16.1.1 Preparation of the Raw Material
			16.1.2 Shaping Processes
			16.1.3 Drying
			16.1.4 Firing (Sintering)
		16.2 Processing of New Ceramics
			16.2.1 Preparation of Starting Materials
			16.2.2 Shaping
			16.2.3 Sintering
			16.2.4 Finishing
		16.3 Processing of Cermets
			16.3.1 Cemented Carbides
			16.3.2 Other Cermets and Ceramic Matrix Composites
		16.4 Product Design Considerations
Part V: Metal Forming and Sheet Metalworking
	17: Fundamentals of Metal Forming
		17.1 Overview of Metal Forming
		17.2 Material Behavior in Metal Forming
		17.3 Temperature in Metal Forming
		17.4 Strain Rate Sensitivity
		17.5 Friction and Lubrication in Metal Forming
	18: Bulk Deformation Processes in Metal Working
		18.1 Rolling
			18.1.1 Flat Rolling and Its Analysis
			18.1.2 Shape Rolling
			18.1.3 Rolling Mills
			18.1.4 Other Processes Related to Rolling
		18.2 Forging
			18.2.1 Open-Die Forging
			18.2.2 Impression-Die Forging
			18.2.3 Flashless Forging
			18.2.4 Forging Hammers, Presses, and Dies
			18.2.5 Other Processes Related to Forging
		18.3 Extrusion
			18.3.1 Types of Extrusion
			18.3.2 Analysis of Extrusion
			18.3.3 Extrusion Dies and Presses
			18.3.4 Other Extrusion Processes
			18.3.5 Defects in Extruded Products
		18.4 Wire and Bar Drawing
			18.4.1 Analysis of Drawing
			18.4.2 Drawing Practice
			18.4.3 Tube Drawing
	19: Sheet Metalworking
		19.1 Cutting Operations
			19.1.1 Shearing, Blanking, and Punching
			19.1.2 Analysis of Sheet Metal Cutting
			19.1.3 Other Sheet Metal Cutting Operations
		19.2 Bending Operations
			19.2.1 V-Bending and Edge Bending
			19.2.2 Analysis of Bending
			19.2.3 Other Bending and Forming Operations
		19.3 Drawing
			19.3.1 Mechanics of Drawing
			19.3.2 Analysis of Drawing
			19.3.3 Other Drawing Operations
		19.4 Dies and Presses for Sheet Metal Processes
			19.4.1 Dies
			19.4.2 Presses
		19.5 Other Sheet-Metal-Forming Operations
			19.5.1 Operations Performed with Metal Tooling
			19.5.2 Rubber Forming Processes
		19.6 Sheet Metal Operations Not Performed on Presses
			19.6.1 Stretch Forming
			19.6.2 Roll Bending and Roll Forming
			19.6.3 Spinning
			19.6.4 High-Energy-Rate Forming
		19.7 Bending of Tube Stock
Part VI: Material Removal Processes
	20: Theory of Metal Machining
		20.1 Overview of Machining Technology
		20.2 Theory of Chip Formation in Metal Machining
			20.2.1 The Orthogonal Cutting Model
			20.2.2 Actual Chip Formation
		20.3 Force Relationships and the Merchant Equation
			20.3.1 Forces in Metal Cutting
			20.3.2 The Merchant Equation
		20.4 Power and Energy Relationships in Machining
		20.5 Cutting Temperature
			20.5.1 Analytical Methods to Compute Cutting Temperatures
			20.5.2 Measurement of Cutting Temperature
	21: Machining Operations and Machine Tools
		21.1 Machining and Part Geometry
		21.2 Turning and Related Operations
			21.2.1 Cutting Conditions in Turning
			21.2.2 Operations Related to Turning
			21.2.3 The Engine Lathe
			21.2.4 Other Lathes and Turning Machines
			21.2.5 Boring Machines
		21.3 Drilling and Related Operations
			21.3.1 Cutting Conditions in Drilling
			21.3.2 Operations Related to Drilling
			21.3.3 Drill Presses
		21.4 Milling
			21.4.1 Types of Milling Operations
			21.4.2 Cutting Conditions in Milling
			21.4.3 Milling Machines
		21.5 Machining Centers and Turning Centers
		21.6 Other Machining Operations
			21.6.1 Shaping and Planing
			21.6.2 Broaching
			21.6.3 Sawing
		21.7 Machining Operations for Special Geometries
			21.7.1 Screw Threads
			21.7.2 Gears
		21.8 High-Speed Machining
	22: Cutting-Tool Technology
		22.1 Tool Life
			22.1.1 Tool Wear
			22.1.2 Tool Life and the Taylor Tool Life Equation
		22.2 Tool Materials
			22.2.1 High-Speed Steel and Its Predecessors
			22.2.2 Cast Cobalt Alloys
			22.2.3 Cemented Carbides, Cermets, and Coated Carbides
			22.2.4 Ceramics
			22.2.5 Synthetic Diamonds and Cubic Boron Nitride
		22.3 Tool Geometry
			22.3.1 Single-Point Tool Geometry
			22.3.2 Multiple-Cutting-Edge Tools
		22.4 Cutting Fluids
			22.4.1 Types of Cutting Fluids
			22.4.2 Application of Cutting Fluids
	23: Economic and Product Design Considerations in Machining
		23.1 Machinability
		23.2 Tolerances and Surface Finish
			23.2.1 Tolerances in Machining
			23.2.2 Surface Finish in Machining
		23.3 Machining Economics
			23.3.1 Selecting Feed and Depth of Cut
			23.3.2 Optimizing Cutting Speed
		23.4 Product Design Considerations in Machining
	24: Grinding and Other Abrasive Processes
		24.1 Grinding
			24.1.1 The Grinding Wheel
			24.1.2 Analysis of the Grinding Process
			24.1.3 Application Considerations in Grinding
			24.1.4 Grinding Operations and Grinding Machines
		24.2 Related Abrasive Processes
			24.2.1 Honing
			24.2.2 Lapping
			24.2.3 Superfinishing
			24.2.4 Polishing and Buffing
	25: Nontraditional Machining and Thermal Cutting Processes
		25.1 Mechanical Energy Processes
			25.1.1 Ultrasonic Machining
			25.1.2 Processes Using Water Jets
			25.1.3 Other Nontraditional Abrasive Processes
		25.2 Electrochemical Machining Processes
			25.2.1 Electrochemical Machining
			25.2.2 Electrochemical Deburring and Grinding
		25.3 Thermal Energy Processes
			25.3.1 Electric Discharge Processes
			25.3.2 Electron-Beam Machining
			25.3.3 Laser-Beam Machining
			25.3.4 Arc-Cutting Processes
			25.3.5 Oxyfuel-Cutting Processes
		25.4 Chemical Machining
			25.4.1 Mechanics and Chemistry of Chemical Machining
			25.4.2 CHM Processes
		25.5 Application Considerations
Part VII: Property Enhancing and Surface Processing Operations
	26: Heat Treatment of Metals
		26.1 Annealing
		26.2 Martensite Formation in Steel
			26.2.1 The Time-Temperature-Transformation Curve
			26.2.2 The Heat Treatment Process
			26.2.3 Hardenability
		26.3 Precipitation Hardening
		26.4 Surface Hardening
		26.5 Heat Treatment Methods and Facilities
			26.5.1 Furnaces for Heat Treatment
			26.5.2 Selective Surface-Hardening Methods
	27: Surface Processing Operations
		27.1 Industrial Cleaning Processes
			27.1.1 Chemical Cleaning
			27.1.2 Mechanical Cleaning and Surface Treatments
		27.2 Diffusion and Ion Implantation
			27.2.1 Diffusion
			27.2.2 Ion Implantation
		27.3 Plating and Related Processes
			27.3.1 Electroplating
			27.3.2 Electroforming
			27.3.3 Electroless Plating
			27.3.4 Hot Dipping
		27.4 Conversion Coating
			27.4.1 Chemical Conversion Coatings
			27.4.2 Anodizing
		27.5 Vapor Deposition Processes
			27.5.1 Physical Vapor Deposition
			27.5.2 Chemical Vapor Deposition
		27.6 Organic Coatings
			27.6.1 Application Methods
			27.6.2 Powder Coating
		27.7 Porcelain Enameling and Other Ceramic Coatings
		27.8 Thermal and Mechanical Coating Processes
			27.8.1 Thermal Surfacing Processes
			27.8.2 Mechanical Plating
Part VIII: Joining and Assembly Processes
	28: Fundamentals of Welding
		28.1 Overview of Welding Technology
			28.1.1 Types of Welding Processes
			28.1.2 Welding as a Commercial Operation
		28.2 The Weld Joint
			28.2.1 Types of Joints
			28.2.2 Types of Welds
		28.3 Physics of Welding
			28.3.1 Power Density
			28.3.2 Heat Balance in Fusion Welding
		28.4 Features of a Fusion-Welded Joint
	29: Welding Processes
		29.1 Arc Welding
			29.1.1 General Technology of Arc Welding
			29.1.2 AW Processes—Consumable Electrodes
			29.1.3 AW Processes—Nonconsumable Electrodes
		29.2 Resistance Welding
			29.2.1 Power Source in Resistance Welding
			29.2.2 Resistance-Welding Processes
		29.3 Oxyfuel Gas Welding
			29.3.1 Oxyacetylene Welding
			29.3.2 Alternative Gases for Oxyfuel Welding
		29.4 Other Fusion-Welding Processes
		29.5 Solid-State Welding
			29.5.1 General Considerations in Solid-State Welding
			29.5.2 Solid-State Welding Processes
		29.6 Weld Quality
		29.7 Weldability and Welding Economics
			29.7.1 Weldability
			29.7.2 Welding Economics
		29.8 Design Considerations in Welding
	30: Brazing, Soldering, and Adhesive Bonding
		30.1 Brazing
			30.1.1 Brazed Joints
			30.1.2 Filler Metals and Fluxes
			30.1.3 Brazing Methods
		30.2 Soldering
			30.2.1 Joint Designs in Soldering
			30.2.2 Solders and Fluxes
			30.2.3 Soldering Methods
		30.3 Adhesive Bonding
			30.3.1 Joint Design
			30.3.2 Adhesive Types
			30.3.3 Adhesive Application Technology
	31: Mechanical Assembly
		31.1 Threaded Fasteners
			31.1.1 Screws, Bolts, and Nuts
			31.1.2 Other Threaded Fasteners and Related Hardware
			31.1.3 Stresses and Strengths in Bolted Joints
			31.1.4 Tools and Methods for Threaded Fasteners
		31.2 Rivets and Eyelets
		31.3 Assembly Methods Based on Interference Fits
		31.4 Other Mechanical Fastening Methods
		31.5 Molding Inserts and Integral Fasteners
		31.6 Design for Assembly
			31.6.1 General Principles of DFA
			31.6.2 Design for Automated Assembly
Part IX: Special Processing and Assembly Technologies
	32: Rapid Prototyping and Additive Manufacturing
		32.1 Fundamentals of Rapid Prototyping and Additive Manufacturing
		32.2 Additive Manufacturing Processes
			32.2.1 Liquid-Based Systems
			32.2.2 Powder-Based Systems
			32.2.3 Molten Material Systems
			32.2.4 Solid Sheet-Based Systems
		32.3 Cycle Time and Cost Analysis
		32.4 Additive Manufacturing Applications
	33: Processing of Integrated Circuits
		33.1 Overview of IC Processing
			33.1.1 Processing Sequence
			33.1.2 Clean Rooms
		33.2 Silicon Processing
			33.2.1 Production of Electronic Grade Silicon
			33.2.2 Crystal Growing
			33.2.3 Shaping of Silicon into Wafers
		33.3 Lithography
			33.3.1 Optical Lithography
			33.3.2 Other Lithography Techniques
		33.4 Layer Processes Used in IC Fabrication
			33.4.1 Thermal Oxidation
			33.4.2 Chemical Vapor Deposition
			33.4.3 Introduction of Impurities into Silicon
			33.4.4 Metallization
			33.4.5 Etching
		33.5 Integrating the Fabrication Steps
		33.6 IC Packaging
			33.6.1 IC Package Design
			33.6.2 Processing Steps in IC Packaging
		33.7 Yields in IC Processing
	34: Electronics Assembly and Packaging
		34.1 Electronics Packaging
		34.2 Printed Circuit Boards
			34.2.1 Structures, Types, and Materials for PCBs
			34.2.2 Production of the Starting Boards
			34.2.3 Processes Used in PCB Fabrication
			34.2.4 PCB Fabrication Sequence
		34.3 Printed Circuit Board Assembly
			34.3.1 Surface-Mount Technology
			34.3.2 Through-Hole Technology
			34.3.3 Combined SMT–PIH Assembly
			34.3.4 Cleaning, Inspection, Testing, and Rework
		34.4 Electrical Connector Technology
			34.4.1 Permanent Connections
			34.4.2 Separable Connectors
	35: Microfabrication Technologies
		35.1 Microsystem Products
			35.1.1 Types of Microsystem Devices
			35.1.2 Microsystem Applications
		35.2 Microfabrication Processes
			35.2.1 Silicon Layer Processes
			35.2.2 LIGA Process
			35.2.3 Other Microfabrication Processes
	36: Nanofabrication Technologies
		36.1 Nanotechnology Products and Applications
			36.1.1 Classification of Products and Applications
			36.1.2 Carbon Nanostructures
		36.2 Introduction to Nanoscience
			36.2.1 Size Matters
			36.2.2 Scanning Probe Microscopes
		36.3 Nanofabrication Processes
			36.3.1 Top-Down Processing Approaches
			36.3.2 Bottom-Up Processing Approaches
Part X: Manufacturing Systems
	37: Automation Technologies for Manufacturing Systems
		37.1 Automation Fundamentals
			37.1.1 Three Components of an Automated System
			37.1.2 Types of Automation
		37.2 Hardware for Automation
			37.2.1 Sensors
			37.2.2 Actuators
			37.2.3 Interface Devices
			37.2.4 Process Controllers
		37.3 Computer Numerical Control
			37.3.1 The Technology of Numerical Control
			37.3.2 Analysis of NC Positioning Systems
			37.3.3 NC Part Programming
			37.3.4 Applications of Numerical Control
		37.4 Industrial Robotics
			37.4.1 Robot Anatomy
			37.4.2 Control Systems and Robot Programming
			37.4.3 Applications of Industrial Robots
	38: Integrated Manufacturing Systems
		38.1 Material Handling
		38.2 Fundamentals of Production Lines
			38.2.1 Methods of Work Transport
			38.2.2 Product Variations
		38.3 Manual Assembly Lines
			38.3.1 Cycle Time Analysis
			38.3.2 Line Balancing and Repositioning Losses
		38.4 Automated Production Lines
			38.4.1 Types of Automated Lines
			38.4.2 Analysis of Automated Production Lines
		38.5 Cellular Manufacturing
			38.5.1 Part Families
			38.5.2 Machine Cells
		38.6 Flexible Manufacturing Systems
			38.6.1 Integrating the FMS Components
			38.6.2 Applications of Flexible Manufacturing Systems
		38.7 Computer-Integrated Manufacturing
Part XI: Manufacturing Support Systems
	39: Process Planning and Production Control
		39.1 Process Planning
			39.1.1 Traditional Process Planning
			39.1.2 Make or Buy Decision
			39.1.3 Computer-Aided Process Planning
		39.2 Other Manufacturing Engineering Functions
			39.2.1 Problem Solving and Continuous Improvement
			39.2.2 Design for Manufacturing and Assembly
			39.2.3 Concurrent Engineering
		39.3 Production Planning and Control
			39.3.1 Aggregate Planning and the Master Production Schedule
			39.3.2 Material Requirements Planning
			39.3.3 Capacity Requirements Planning
			39.3.4 Shop Floor Control
			39.3.5 Enterprise Resource Planning
		39.4 Just-In-Time Delivery Systems
		39.5 Lean Production
			39.5.1 Autonomation
			39.5.2 Worker Involvement
	40: Quality Control and Inspection
		40.1 Product Quality
		40.2 Process Capability and Tolerances
		40.3 Statistical Process Control
			40.3.1 Control Charts for Variables
			40.3.2 Control Charts for Attributes
			40.3.3 Interpreting the Charts
		40.4 Quality Programs in Manufacturing
			40.4.1 Total Quality Management
			40.4.2 Six Sigma
			40.4.3 ISO 9000
		40.5 Inspection Principles
			40.5.1 Manual and Automated Inspection
			40.5.2 Contact vs. Noncontact Inspection
		40.6 Modern Inspection Technologies
			40.6.1 Coordinate Measuring Machines
			40.6.2 Measurements with Lasers
			40.6.3 Machine Vision
			40.6.4 Other Noncontact Inspection Techniques
Appendix: Answers to Selected Problems
Index
Standard Units
Unit Abbreviations
End User License Agreement




نظرات کاربران