دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 6
نویسندگان: Mikell P Groover
سری:
ISBN (شابک) : 1119128803
ناشر:
سال نشر: 2016
تعداد صفحات: 951
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 70 مگابایت
کلمات کلیدی مربوط به کتاب مبانی تولید مدرن: مواد، فرآیندها و سیستم ها: مهندسی
در صورت تبدیل فایل کتاب Fundamentals of Modern Manufacturing: Materials, Processes, and Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی تولید مدرن: مواد، فرآیندها و سیستم ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مبانی تولید مدرن: مواد، فرآیندها و سیستمها، ویرایش ششم، برای اولین دوره یا توالی دو دورهای در تولید در سطح متوسطه در برنامههای درسی مهندسی مکانیک، صنعتی و ساختوساز طراحی شده است. مانند نسخههای قبلی، هدف نویسنده ارائه رویکردی مدرن و کمی از تولید است. رویکرد مدرن کتاب مبتنی بر پوشش متعادل مواد اولیه مهندسی، شامل فرآیندهای تولید اخیراً توسعهیافته و پوشش جامع فناوریهای تولید الکترونیک است. تمرکز کمی متن در تأکید آن بر علم ساخت و ساز و استفاده بیشتر آن از مدلهای ریاضی و مسائل کمی انتهای فصل نشان داده میشود.
Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, 6th Edition, is designed for a first course or two-course sequence in Manufacturing at the junior level in Mechanical, Industrial, and Manufacturing Engineering curricula. As in preceding editions, the author's objective is to provide a treatment of manufacturing that is modern and quantitative. The book's modern approach is based on balanced coverage of the basic engineering materials, the inclusion of recently developed manufacturing processes and comprehensive coverage of electronics manufacturing technologies. The quantitative focus of the text is displayed in its emphasis on manufacturing science and its greater use of mathematical models and quantitative end-of-chapter problems.
Cover Title Page Copyright Preface Acknowledgements Contents 1: Introduction and Overview of Manufacturing 1.1 What Is Manufacturing? 1.1.1 Manufacturing Defined 1.1.2 Manufacturing Industries and Products 1.1.3 Manufacturing Capability 1.2 Materials in Manufacturing 1.2.1 Metals 1.2.2 Ceramics 1.2.3 Polymers 1.2.4 Composites 1.3 Manufacturing Processes 1.3.1 Processing Operations 1.3.2 Assembly Operations 1.3.3 Production Machines and Tooling 1.4 Production Systems 1.4.1 Production Facilities 1.4.2 Manufacturing Support Systems 1.5 Manufacturing Economics 1.5.1 Production Cycle Time Analysis 1.5.2 Manufacturing Cost Models Part I: Material Properties and Product Attributes 2: The Nature of Materials 2.1 Atomic Structure and the Elements 2.2 Bonding between Atoms and Molecules 2.3 Crystalline Structures 2.3.1 Types of Crystal Structures 2.3.2 Imperfections in Crystals 2.3.3 Deformation in Metallic Crystals 2.3.4 Grains and Grain Boundaries in Metals 2.4 Noncrystalline (Amorphous) Structures 2.5 Engineering Materials 3: Mechanical Properties of Materials 3.1 Stress–Strain Relationships 3.1.1 Tensile Properties 3.1.2 Compression Properties 3.1.3 Bending and Testing of Brittle Materials 3.1.4 Shear Properties 3.2 Hardness 3.2.1 Hardness Tests 3.2.2 Hardness of Various Materials 3.3 Effect of Temperature on Properties 3.4 Fluid Properties 3.5 Viscoelastic Behavior of Polymers 4: Physical Properties of Materials 4.1 Volumetric and Melting Properties 4.1.1 Density 4.1.2 Thermal Expansion 4.1.3 Melting Characteristics 4.2 Thermal Properties 4.2.1 Specific Heat and Thermal Conductivity 4.2.2 Thermal Properties in Manufacturing 4.3 Mass Diffusion 4.4 Electrical Properties 4.4.1 Resistivity and Conductivity 4.4.2 Classes of Materials by Electrical Properties 4.5 Electrochemical Processes 5: Dimensions, Surfaces, and Their Measurement 5.1 Dimensions, Tolerances, and Related Attributes 5.1.1 Dimensions and Tolerances 5.1.2 Other Geometric Attributes 5.2 Conventional Measuring Instruments and Gages 5.2.1 Precision Gage Blocks 5.2.2 Measuring Instruments for Linear Dimensions 5.2.3 Comparative Instruments 5.2.4 Fixed Gages 5.2.5 Angular Measurements 5.3 Surfaces 5.3.1 Characteristics of Surfaces 5.3.2 Surface Texture 5.3.3 Surface Integrity 5.4 Measurement of Surfaces 5.4.1 Measurement of Surface Roughness 5.4.2 Evaluation of Surface Integrity 5.5 Effect of Manufacturing Processes Part II: Engineering Materials 6: Metals 6.1 Alloys and Phase Diagrams 6.1.1 Alloys 6.1.2 Phase Diagrams 6.2 Ferrous Metals 6.2.1 The Iron–Carbon Phase Diagram 6.2.2 Iron and Steel Production 6.2.3 Steels 6.2.4 Cast Irons 6.3 Nonferrous Metals 6.3.1 Aluminum and Its Alloys 6.3.2 Magnesium and Its Alloys 6.3.3 Copper and Its Alloys 6.3.4 Nickel and Its Alloys 6.3.5 Titanium and Its Alloys 6.3.6 Zinc and Its Alloys 6.3.7 Lead and Tin 6.3.8 Refractory Metals 6.3.9 Precious Metals 6.4 Superalloys 7: Ceramics 7.1 Structure and Properties of Ceramics 7.1.1 Mechanical Properties 7.1.2 Physical Properties 7.2 Traditional Ceramics 7.2.1 Raw Materials 7.2.2 Traditional Ceramic Products 7.3 New Ceramics 7.3.1 Oxide Ceramics 7.3.2 Carbides 7.3.3 Nitrides 7.4 Glass 7.4.1 Chemistry and Properties of Glass 7.4.2 Glass Products 7.4.3 Glass-Ceramics 7.5 Some Important Elements Related to Ceramics 7.5.1 Carbon 7.5.2 Silicon 7.5.3 Boron 8: Polymers 8.1 Fundamentals of Polymer Science and Technology 8.1.1 Polymerization 8.1.2 Polymer Structures and Copolymers 8.1.3 Crystallinity 8.1.4 Thermal Behavior of Polymers 8.1.5 Additives 8.2 Thermoplastic Polymers 8.2.1 Properties of Thermoplastic Polymers 8.2.2 Important Commercial Thermoplastics 8.3 Thermosetting Polymers 8.3.1 General Properties and Characteristics 8.3.2 Important Thermosetting Polymers 8.4 Elastomers 8.4.1 Characteristics of Elastomers 8.4.2 Natural Rubber 8.4.3 Synthetic Rubbers 8.5 Polymer Recycling and Biodegradability 8.5.1 Polymer Recycling 8.5.2 Biodegradable Polymers 9: Composite Materials 9.1 Technology and Classification of Composite Materials 9.1.1 Components in a Composite Material 9.1.2 The Reinforcing Phase 9.1.3 Properties of Composite Materials 9.1.4 Other Composite Structures 9.2 Metal Matrix Composites 9.2.1 Cermets 9.2.2 Fiber-Reinforced Metal Matrix Composites 9.3 Ceramic Matrix Composites 9.4 Polymer Matrix Composites 9.4.1 Fiber-Reinforced Polymers 9.4.2 Other Polymer Matrix Composites Part III: Solidification Processes 10: Fundamentals of Metal Casting 10.1 Overview of Casting Technology 10.1.1 Casting Processes 10.1.2 Sand-Casting Molds 10.2 Heating and Pouring 10.2.1 Heating the Metal 10.2.2 Pouring the Molten Metal 10.2.3 Engineering Analysis of Pouring 10.2.4 Fluidity 10.3 Solidification and Cooling 10.3.1 Solidification of Metals 10.3.2 Solidification Time 10.3.3 Shrinkage 10.3.4 Directional Solidification 10.3.5 Riser Design 11: Metal Casting Processes 11.1 Sand Casting 11.1.1 Patterns and Cores 11.1.2 Molds and Mold Making 11.1.3 The Casting Operation 11.2 Other Expendable-Mold Casting Processes 11.2.1 Shell Molding 11.2.2 Expanded-Polystyrene Process 11.2.3 Investment Casting 11.2.4 Plaster-Mold and Ceramic-Mold Casting 11.3 Permanent-Mold Casting Processes 11.3.1 The Basic Permanent-Mold Process 11.3.2 Variations of Permanent-Mold Casting 11.3.3 Die Casting 11.3.4 Squeeze Casting and Semisolid Metal Casting 11.3.5 Centrifugal Casting 11.4 Foundry Practice 11.4.1 Furnaces 11.4.2 Pouring, Cleaning, and Heat Treatment 11.5 Casting Quality 11.6 Castability and Casting Economics 11.6.1 Casting Metals 11.6.2 Casting Economics 11.7 Product Design Considerations 12: Glassworking 12.1 Raw Materials Preparation and Melting 12.2 Shaping Processes in Glassworking 12.2.1 Shaping of Piece Ware 12.2.2 Shaping of Flat and Tubular Glass 12.2.3 Forming of Glass Fibers 12.3 Heat Treatment and Finishing 12.3.1 Heat Treatment 12.3.2 Finishing 12.4 Product Design Considerations 13: Shaping Processes for Plastics 13.1 Properties of Polymer Melts 13.2 Extrusion 13.2.1 Process and Equipment 13.2.2 Analysis of Extrusion 13.2.3 Die Configurations and Extruded Products 13.2.4 Defects in Extrusion 13.3 Production of Sheet and Film 13.4 Fiber and Filament Production (Spinning) 13.5 Coating Processes 13.6 Injection Molding 13.6.1 Process and Equipment 13.6.2 The Mold 13.6.3 Injection-Molding Machines 13.6.4 Shrinkage and Defects in Injection Molding 13.6.5 Other Injection-Molding Processes 13.7 Compression and Transfer Molding 13.7.1 Compression Molding 13.7.2 Transfer Molding 13.8 Blow Molding and Rotational Molding 13.8.1 Blow Molding 13.8.2 Rotational Molding 13.9 Thermoforming 13.10 Casting 13.11 Polymer Foam Processing and Forming 13.12 Product Design Considerations 14: Processing of Polymer Matrix Composites and Rubber 14.1 Overview of PMC Processing 14.1.1 Starting Materials for PMCs 14.1.2 Combining Matrix and Reinforcement 14.2 Open-Mold Processes 14.2.1 Hand Lay-Up 14.2.2 Spray-Up 14.2.3 Automated Lay-Up 14.2.4 Curing 14.3 Closed-Mold Processes 14.3.1 Compression-Molding PMC Processes 14.3.2 Transfer-Molding PMC Processes 14.3.3 Injection-Molding PMC Processes 14.4 Other PMC Shaping Processes 14.4.1 Filament Winding 14.4.2 Pultrusion Processes 14.4.3 Miscellaneous PMC Shaping Processes 14.5 Rubber Processing and Shaping 14.5.1 Production of Rubber 14.5.2 Compounding and Mixing 14.5.3 Shaping and Related Processes 14.5.4 Vulcanization 14.5.5 Processing of Thermoplastic Elastomers 14.6 Manufacture of Tires and Other Rubber Products 14.6.1 Tires 14.6.2 Other Rubber Products Part IV: Particulate Processing of Metals and Ceramics 15: Powder Metallurgy 15.1 Characterization of Engineering Powders 15.1.1 Geometric Features 15.1.2 Other Features 15.2 Production of Metallic Powders 15.2.1 Atomization 15.2.2 Other Production Methods 15.3 Conventional Pressing and Sintering 15.3.1 Blending and Mixing of the Powders 15.3.2 Compaction 15.3.3 Sintering 15.3.4 Secondary Operations 15.4 Alternative Pressing and Sintering Techniques 15.4.1 Isostatic Pressing 15.4.2 Powder Injection Molding 15.4.3 Powder Rolling, Extrusion, and Forging 15.4.4 Liquid-Phase Sintering 15.5 Materials and Products for Powder Metallurgy 15.6 Design Considerations in Powder Metallurgy 16: Processing of Ceramics and Cermets 16.1 Processing of Traditional Ceramics 16.1.1 Preparation of the Raw Material 16.1.2 Shaping Processes 16.1.3 Drying 16.1.4 Firing (Sintering) 16.2 Processing of New Ceramics 16.2.1 Preparation of Starting Materials 16.2.2 Shaping 16.2.3 Sintering 16.2.4 Finishing 16.3 Processing of Cermets 16.3.1 Cemented Carbides 16.3.2 Other Cermets and Ceramic Matrix Composites 16.4 Product Design Considerations Part V: Metal Forming and Sheet Metalworking 17: Fundamentals of Metal Forming 17.1 Overview of Metal Forming 17.2 Material Behavior in Metal Forming 17.3 Temperature in Metal Forming 17.4 Strain Rate Sensitivity 17.5 Friction and Lubrication in Metal Forming 18: Bulk Deformation Processes in Metal Working 18.1 Rolling 18.1.1 Flat Rolling and Its Analysis 18.1.2 Shape Rolling 18.1.3 Rolling Mills 18.1.4 Other Processes Related to Rolling 18.2 Forging 18.2.1 Open-Die Forging 18.2.2 Impression-Die Forging 18.2.3 Flashless Forging 18.2.4 Forging Hammers, Presses, and Dies 18.2.5 Other Processes Related to Forging 18.3 Extrusion 18.3.1 Types of Extrusion 18.3.2 Analysis of Extrusion 18.3.3 Extrusion Dies and Presses 18.3.4 Other Extrusion Processes 18.3.5 Defects in Extruded Products 18.4 Wire and Bar Drawing 18.4.1 Analysis of Drawing 18.4.2 Drawing Practice 18.4.3 Tube Drawing 19: Sheet Metalworking 19.1 Cutting Operations 19.1.1 Shearing, Blanking, and Punching 19.1.2 Analysis of Sheet Metal Cutting 19.1.3 Other Sheet Metal Cutting Operations 19.2 Bending Operations 19.2.1 V-Bending and Edge Bending 19.2.2 Analysis of Bending 19.2.3 Other Bending and Forming Operations 19.3 Drawing 19.3.1 Mechanics of Drawing 19.3.2 Analysis of Drawing 19.3.3 Other Drawing Operations 19.4 Dies and Presses for Sheet Metal Processes 19.4.1 Dies 19.4.2 Presses 19.5 Other Sheet-Metal-Forming Operations 19.5.1 Operations Performed with Metal Tooling 19.5.2 Rubber Forming Processes 19.6 Sheet Metal Operations Not Performed on Presses 19.6.1 Stretch Forming 19.6.2 Roll Bending and Roll Forming 19.6.3 Spinning 19.6.4 High-Energy-Rate Forming 19.7 Bending of Tube Stock Part VI: Material Removal Processes 20: Theory of Metal Machining 20.1 Overview of Machining Technology 20.2 Theory of Chip Formation in Metal Machining 20.2.1 The Orthogonal Cutting Model 20.2.2 Actual Chip Formation 20.3 Force Relationships and the Merchant Equation 20.3.1 Forces in Metal Cutting 20.3.2 The Merchant Equation 20.4 Power and Energy Relationships in Machining 20.5 Cutting Temperature 20.5.1 Analytical Methods to Compute Cutting Temperatures 20.5.2 Measurement of Cutting Temperature 21: Machining Operations and Machine Tools 21.1 Machining and Part Geometry 21.2 Turning and Related Operations 21.2.1 Cutting Conditions in Turning 21.2.2 Operations Related to Turning 21.2.3 The Engine Lathe 21.2.4 Other Lathes and Turning Machines 21.2.5 Boring Machines 21.3 Drilling and Related Operations 21.3.1 Cutting Conditions in Drilling 21.3.2 Operations Related to Drilling 21.3.3 Drill Presses 21.4 Milling 21.4.1 Types of Milling Operations 21.4.2 Cutting Conditions in Milling 21.4.3 Milling Machines 21.5 Machining Centers and Turning Centers 21.6 Other Machining Operations 21.6.1 Shaping and Planing 21.6.2 Broaching 21.6.3 Sawing 21.7 Machining Operations for Special Geometries 21.7.1 Screw Threads 21.7.2 Gears 21.8 High-Speed Machining 22: Cutting-Tool Technology 22.1 Tool Life 22.1.1 Tool Wear 22.1.2 Tool Life and the Taylor Tool Life Equation 22.2 Tool Materials 22.2.1 High-Speed Steel and Its Predecessors 22.2.2 Cast Cobalt Alloys 22.2.3 Cemented Carbides, Cermets, and Coated Carbides 22.2.4 Ceramics 22.2.5 Synthetic Diamonds and Cubic Boron Nitride 22.3 Tool Geometry 22.3.1 Single-Point Tool Geometry 22.3.2 Multiple-Cutting-Edge Tools 22.4 Cutting Fluids 22.4.1 Types of Cutting Fluids 22.4.2 Application of Cutting Fluids 23: Economic and Product Design Considerations in Machining 23.1 Machinability 23.2 Tolerances and Surface Finish 23.2.1 Tolerances in Machining 23.2.2 Surface Finish in Machining 23.3 Machining Economics 23.3.1 Selecting Feed and Depth of Cut 23.3.2 Optimizing Cutting Speed 23.4 Product Design Considerations in Machining 24: Grinding and Other Abrasive Processes 24.1 Grinding 24.1.1 The Grinding Wheel 24.1.2 Analysis of the Grinding Process 24.1.3 Application Considerations in Grinding 24.1.4 Grinding Operations and Grinding Machines 24.2 Related Abrasive Processes 24.2.1 Honing 24.2.2 Lapping 24.2.3 Superfinishing 24.2.4 Polishing and Buffing 25: Nontraditional Machining and Thermal Cutting Processes 25.1 Mechanical Energy Processes 25.1.1 Ultrasonic Machining 25.1.2 Processes Using Water Jets 25.1.3 Other Nontraditional Abrasive Processes 25.2 Electrochemical Machining Processes 25.2.1 Electrochemical Machining 25.2.2 Electrochemical Deburring and Grinding 25.3 Thermal Energy Processes 25.3.1 Electric Discharge Processes 25.3.2 Electron-Beam Machining 25.3.3 Laser-Beam Machining 25.3.4 Arc-Cutting Processes 25.3.5 Oxyfuel-Cutting Processes 25.4 Chemical Machining 25.4.1 Mechanics and Chemistry of Chemical Machining 25.4.2 CHM Processes 25.5 Application Considerations Part VII: Property Enhancing and Surface Processing Operations 26: Heat Treatment of Metals 26.1 Annealing 26.2 Martensite Formation in Steel 26.2.1 The Time-Temperature-Transformation Curve 26.2.2 The Heat Treatment Process 26.2.3 Hardenability 26.3 Precipitation Hardening 26.4 Surface Hardening 26.5 Heat Treatment Methods and Facilities 26.5.1 Furnaces for Heat Treatment 26.5.2 Selective Surface-Hardening Methods 27: Surface Processing Operations 27.1 Industrial Cleaning Processes 27.1.1 Chemical Cleaning 27.1.2 Mechanical Cleaning and Surface Treatments 27.2 Diffusion and Ion Implantation 27.2.1 Diffusion 27.2.2 Ion Implantation 27.3 Plating and Related Processes 27.3.1 Electroplating 27.3.2 Electroforming 27.3.3 Electroless Plating 27.3.4 Hot Dipping 27.4 Conversion Coating 27.4.1 Chemical Conversion Coatings 27.4.2 Anodizing 27.5 Vapor Deposition Processes 27.5.1 Physical Vapor Deposition 27.5.2 Chemical Vapor Deposition 27.6 Organic Coatings 27.6.1 Application Methods 27.6.2 Powder Coating 27.7 Porcelain Enameling and Other Ceramic Coatings 27.8 Thermal and Mechanical Coating Processes 27.8.1 Thermal Surfacing Processes 27.8.2 Mechanical Plating Part VIII: Joining and Assembly Processes 28: Fundamentals of Welding 28.1 Overview of Welding Technology 28.1.1 Types of Welding Processes 28.1.2 Welding as a Commercial Operation 28.2 The Weld Joint 28.2.1 Types of Joints 28.2.2 Types of Welds 28.3 Physics of Welding 28.3.1 Power Density 28.3.2 Heat Balance in Fusion Welding 28.4 Features of a Fusion-Welded Joint 29: Welding Processes 29.1 Arc Welding 29.1.1 General Technology of Arc Welding 29.1.2 AW Processes—Consumable Electrodes 29.1.3 AW Processes—Nonconsumable Electrodes 29.2 Resistance Welding 29.2.1 Power Source in Resistance Welding 29.2.2 Resistance-Welding Processes 29.3 Oxyfuel Gas Welding 29.3.1 Oxyacetylene Welding 29.3.2 Alternative Gases for Oxyfuel Welding 29.4 Other Fusion-Welding Processes 29.5 Solid-State Welding 29.5.1 General Considerations in Solid-State Welding 29.5.2 Solid-State Welding Processes 29.6 Weld Quality 29.7 Weldability and Welding Economics 29.7.1 Weldability 29.7.2 Welding Economics 29.8 Design Considerations in Welding 30: Brazing, Soldering, and Adhesive Bonding 30.1 Brazing 30.1.1 Brazed Joints 30.1.2 Filler Metals and Fluxes 30.1.3 Brazing Methods 30.2 Soldering 30.2.1 Joint Designs in Soldering 30.2.2 Solders and Fluxes 30.2.3 Soldering Methods 30.3 Adhesive Bonding 30.3.1 Joint Design 30.3.2 Adhesive Types 30.3.3 Adhesive Application Technology 31: Mechanical Assembly 31.1 Threaded Fasteners 31.1.1 Screws, Bolts, and Nuts 31.1.2 Other Threaded Fasteners and Related Hardware 31.1.3 Stresses and Strengths in Bolted Joints 31.1.4 Tools and Methods for Threaded Fasteners 31.2 Rivets and Eyelets 31.3 Assembly Methods Based on Interference Fits 31.4 Other Mechanical Fastening Methods 31.5 Molding Inserts and Integral Fasteners 31.6 Design for Assembly 31.6.1 General Principles of DFA 31.6.2 Design for Automated Assembly Part IX: Special Processing and Assembly Technologies 32: Rapid Prototyping and Additive Manufacturing 32.1 Fundamentals of Rapid Prototyping and Additive Manufacturing 32.2 Additive Manufacturing Processes 32.2.1 Liquid-Based Systems 32.2.2 Powder-Based Systems 32.2.3 Molten Material Systems 32.2.4 Solid Sheet-Based Systems 32.3 Cycle Time and Cost Analysis 32.4 Additive Manufacturing Applications 33: Processing of Integrated Circuits 33.1 Overview of IC Processing 33.1.1 Processing Sequence 33.1.2 Clean Rooms 33.2 Silicon Processing 33.2.1 Production of Electronic Grade Silicon 33.2.2 Crystal Growing 33.2.3 Shaping of Silicon into Wafers 33.3 Lithography 33.3.1 Optical Lithography 33.3.2 Other Lithography Techniques 33.4 Layer Processes Used in IC Fabrication 33.4.1 Thermal Oxidation 33.4.2 Chemical Vapor Deposition 33.4.3 Introduction of Impurities into Silicon 33.4.4 Metallization 33.4.5 Etching 33.5 Integrating the Fabrication Steps 33.6 IC Packaging 33.6.1 IC Package Design 33.6.2 Processing Steps in IC Packaging 33.7 Yields in IC Processing 34: Electronics Assembly and Packaging 34.1 Electronics Packaging 34.2 Printed Circuit Boards 34.2.1 Structures, Types, and Materials for PCBs 34.2.2 Production of the Starting Boards 34.2.3 Processes Used in PCB Fabrication 34.2.4 PCB Fabrication Sequence 34.3 Printed Circuit Board Assembly 34.3.1 Surface-Mount Technology 34.3.2 Through-Hole Technology 34.3.3 Combined SMT–PIH Assembly 34.3.4 Cleaning, Inspection, Testing, and Rework 34.4 Electrical Connector Technology 34.4.1 Permanent Connections 34.4.2 Separable Connectors 35: Microfabrication Technologies 35.1 Microsystem Products 35.1.1 Types of Microsystem Devices 35.1.2 Microsystem Applications 35.2 Microfabrication Processes 35.2.1 Silicon Layer Processes 35.2.2 LIGA Process 35.2.3 Other Microfabrication Processes 36: Nanofabrication Technologies 36.1 Nanotechnology Products and Applications 36.1.1 Classification of Products and Applications 36.1.2 Carbon Nanostructures 36.2 Introduction to Nanoscience 36.2.1 Size Matters 36.2.2 Scanning Probe Microscopes 36.3 Nanofabrication Processes 36.3.1 Top-Down Processing Approaches 36.3.2 Bottom-Up Processing Approaches Part X: Manufacturing Systems 37: Automation Technologies for Manufacturing Systems 37.1 Automation Fundamentals 37.1.1 Three Components of an Automated System 37.1.2 Types of Automation 37.2 Hardware for Automation 37.2.1 Sensors 37.2.2 Actuators 37.2.3 Interface Devices 37.2.4 Process Controllers 37.3 Computer Numerical Control 37.3.1 The Technology of Numerical Control 37.3.2 Analysis of NC Positioning Systems 37.3.3 NC Part Programming 37.3.4 Applications of Numerical Control 37.4 Industrial Robotics 37.4.1 Robot Anatomy 37.4.2 Control Systems and Robot Programming 37.4.3 Applications of Industrial Robots 38: Integrated Manufacturing Systems 38.1 Material Handling 38.2 Fundamentals of Production Lines 38.2.1 Methods of Work Transport 38.2.2 Product Variations 38.3 Manual Assembly Lines 38.3.1 Cycle Time Analysis 38.3.2 Line Balancing and Repositioning Losses 38.4 Automated Production Lines 38.4.1 Types of Automated Lines 38.4.2 Analysis of Automated Production Lines 38.5 Cellular Manufacturing 38.5.1 Part Families 38.5.2 Machine Cells 38.6 Flexible Manufacturing Systems 38.6.1 Integrating the FMS Components 38.6.2 Applications of Flexible Manufacturing Systems 38.7 Computer-Integrated Manufacturing Part XI: Manufacturing Support Systems 39: Process Planning and Production Control 39.1 Process Planning 39.1.1 Traditional Process Planning 39.1.2 Make or Buy Decision 39.1.3 Computer-Aided Process Planning 39.2 Other Manufacturing Engineering Functions 39.2.1 Problem Solving and Continuous Improvement 39.2.2 Design for Manufacturing and Assembly 39.2.3 Concurrent Engineering 39.3 Production Planning and Control 39.3.1 Aggregate Planning and the Master Production Schedule 39.3.2 Material Requirements Planning 39.3.3 Capacity Requirements Planning 39.3.4 Shop Floor Control 39.3.5 Enterprise Resource Planning 39.4 Just-In-Time Delivery Systems 39.5 Lean Production 39.5.1 Autonomation 39.5.2 Worker Involvement 40: Quality Control and Inspection 40.1 Product Quality 40.2 Process Capability and Tolerances 40.3 Statistical Process Control 40.3.1 Control Charts for Variables 40.3.2 Control Charts for Attributes 40.3.3 Interpreting the Charts 40.4 Quality Programs in Manufacturing 40.4.1 Total Quality Management 40.4.2 Six Sigma 40.4.3 ISO 9000 40.5 Inspection Principles 40.5.1 Manual and Automated Inspection 40.5.2 Contact vs. Noncontact Inspection 40.6 Modern Inspection Technologies 40.6.1 Coordinate Measuring Machines 40.6.2 Measurements with Lasers 40.6.3 Machine Vision 40.6.4 Other Noncontact Inspection Techniques Appendix: Answers to Selected Problems Index Standard Units Unit Abbreviations End User License Agreement