دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: متالورژی ویرایش: نویسندگان: Dheerendra Kumar Dwivedi سری: ISBN (شابک) : 9811648182, 9789811648182 ناشر: Springer سال نشر: 2021 تعداد صفحات: 449 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Fundamentals of Metal Joining: Processes, Mechanism and Performance به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی اتصال فلزات: فرآیندها، مکانیسم و عملکرد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی درک اساسی در مورد جنبه های تکنولوژیکی مربوط به جوش قوس الکتریکی، جریان گرما، تحولات متالورژی مربوطه، و اتصالات متدولوژی تضمین کیفیت ارائه می دهد. این با رعایت الزامات علاقه مندان به تحقیق و توسعه در زمینه اتصال فلزات تشکیل شده است. مطالب بر روی مبانی فیزیک اتصالات جوشی، فرآیندهای جوشکاری قوس الکتریکی، لحیم کاری و لحیم کاری، جریان گرما در جوشکاری، متالورژی جوشکاری، طراحی اتصالات جوشی، و بازرسی و آزمایش اتصالات جوش داده شده و جوش پذیری فلزات تمرکز دارد. این کتاب هم برای دانشگاهیان و هم برای کسانی که در صنعت هستند مفید خواهد بود.
This textbook provides fundamental understanding on technological aspects related to arc welding, heat flow, relevant metallurgical transformations, and quality assurance methodologies joints. It has been composed keeping in purview the requirements of those interested in research and development in the field of metal joining. The contents focus on the fundamentals of physics of welded joints, arc welding processes, brazing and soldering, heat flow in welding, welding metallurgy, design of welded joints, and inspection and testing of welded joints and weldability of metals. This book will be useful to both academics and those in the industry.
Preface About This book Contents About the Author Part I Basics of Metal Joining 1 Metal Joining: Need, Approaches and Mechanisms 1.1 Basics and Need of Joining 1.1.1 Fundamental Approaches of Metal Joining and Joint Capability 1.1.2 Relevance of Heat and Pressure in Metal Joining 1.1.3 Sources of Heat for Metal Joining 1.1.4 Heat and Characteristics of Metallic Joint 1.2 Mechanisms of Joining 1.2.1 Fusion 1.2.2 Plastic Deformation 1.2.3 Chemical Reactions 1.2.4 Metallurgical Reactions 1.3 Choice of the Method of Joining 1.3.1 Type of Joint 1.3.2 Type of Metallic Combination 1.3.3 Workpiece Metal 1.3.4 Service Environment 1.3.5 Reliability 1.3.6 Nature of Loading 1.3.7 Type of Stress 1.3.8 Economy of Joining 1.4 Manufacturing Processes and Welding 1.5 Welding and Its Uniqueness 1.5.1 Selection of Welding as a Route for Manufacturing 1.6 Advantages and Limitations of Welding 1.7 Applications of Welding Further Reading 2 Classification of Joining Processes 2.1 Classification Based on Approach of Joining Processes 2.1.1 Fusion Weld Processes 2.1.2 Cast Weld Processes 2.1.3 Resistance Weld Processes 2.1.4 Solid State Welding Process 2.2 Classification Based on Technological Factors of Welding Processes 2.2.1 Welding With/Without Filler Material 2.2.2 Source of Energy for Welding 2.2.3 Arc and Non-arc Welding 2.2.4 Pressure and Fusion Welding Further Reading 3 Heat Generation and Protection of Weld 3.1 Need of Heat in Welding 3.2 Heat Generation 3.2.1 Chemical Reactions 3.2.2 Electric Arc 3.2.3 Resistance Heating 3.2.4 Friction and Deformation Heat 3.3 Effect of Heat Generation and Weld Joint Characteristics 3.4 Protection of Weld Pool 3.4.1 Forming Envelop/shroud of Inactive or Inert Gas 3.4.2 Covering the Weld Pool Using Molten Flux 3.5 Cleanliness of Weld Metals and Welding Processes (Approaches for Protection of the Weld Pool) 3.5.1 Shielded Metal Arc Welding 3.5.2 Submerged Arc Welding 3.5.3 Gas Tungsten Arc Welding 3.5.4 Gas Metal Arc Welding 3.5.5 Electro-Slag and Electro-Gas Welding Further Reading 4 Power Density and Peak Temperature of Welding Processes 4.1 Introduction 4.2 Effect of Power Density 4.3 Need of Optimum Power Density of Welding Process Further Reading Part II Physics of Welding Arc 5 Physics of Welding Arc 5.1 Introduction 5.2 Emission of Free Electrons 5.2.1 Thermo-Ionic Emission 5.2.2 Field Emission 5.2.3 Secondary Emission 5.3 Zones in Arc Gap 5.3.1 Cathode Spot 5.3.2 Cathode Drop Region 5.3.3 Plasma Zone 5.3.4 Anode Drop Region 5.3.5 Anode Spot 5.4 Electrical Fundamentals of Welding Arc Further Reading 6 Physics of Welding Arc 6.1 Arc Initiation 6.1.1 Touch Start 6.1.2 Field Start 6.2 Maintenance of Arc 6.2.1 Low Ionization Potential Elements 6.2.2 Low Power Factor 6.3 Welding Arc Characteristic 6.4 Temperature of the Arc Further Reading 7 Physics of Welding Arc 7.1 Arc Forces and Their Significance on Welding 7.1.1 Gravity Force 7.1.2 Surface Tension Force 7.1.3 Force Due to Impact of Charge Carriers 7.1.4 Force Due to Metal Vapours 7.1.5 Force Due to Gas Eruption 7.1.6 Force Due to Electro Magnetic Field 7.2 Effect of Electrode Polarity 7.2.1 Heat Generation 7.2.2 Arc Initiation and Stability 7.2.3 Cleaning Action 7.3 Arc Blow 7.3.1 Causes of Arc Blow 7.3.2 Mechanism of Arc Blow 7.3.3 Controlling the Arc Blow Further Reading 8 Physics of Welding Arc 8.1 Arc Efficiency 8.1.1 Arc Efficiency of Different Welding Processes 8.1.2 Calculations of Arc Efficiency 8.2 Metal Transfer 8.2.1 Short Circuit Transfer and Dip Transfer 8.2.2 Globular Transfer 8.2.3 Spray Transfer 8.2.4 Rotational Transfer 8.3 Melting Rate 8.3.1 Factors Limiting the Melting Rate Further Reading Part III Arc Welding Power Source 9 Arc Welding Power Source 9.1 Introduction 9.2 Characteristics of Power Source 9.2.1 Open Circuit Voltage (OCV) 9.2.2 Power Factor (pf) 9.2.3 Static Characteristic of Power Source Further Reading 10 Arc Welding Power Source 10.1 Rising Characteristics 10.2 Dynamic Characteristic 10.3 Duty Cycle 10.4 Class of Insulation 10.5 High Frequency Unit 10.6 Feed Drives for Constant Arc Length Further Reading Part IV Arc Welding Processes 11 Arc Welding Processes: Shielded Metal Arc Welding—Principle, Electrode and Parameters 11.1 Arc Welding Process 11.2 Shielded Metal Arc Welding (SMAW) 11.3 Shielding in SMA Welding 11.4 Coating on SMAW Electrode 11.5 Types of SMAW Electrodes 11.5.1 Rutile Electrode 11.5.2 Cellulosic Electrodes 11.5.3 Acidic Electrode 11.5.4 Basic Electrode 11.5.5 Basic Rutile Electrode 11.6 Welding Parameters for SMAW Further Reading 12 Arc Welding Processes: Shielded Metal Arc Welding: Welding Current and Metal Transfer 12.1 Selection of Type of Welding Current 12.2 Electrode Size and Coating Factor 12.3 Weld Beads 12.4 Metal Transfer in SMAW Further Reading 13 Arc Welding Processes: Submerged Arc Welding: Principle, Parameters and Applications 13.1 Introduction 13.2 Components of SAW System 13.2.1 Power Source 13.2.2 Welding Electrode 13.2.3 SAW Flux 13.3 Composition of the SAW Fluxes 13.4 Fluxes for SAW and Recycling of Slag 13.5 Welding Parameters 13.5.1 Welding Current 13.5.2 Welding Voltage 13.5.3 Welding Speed 13.6 Bead Geometry and Effect of Welding Parameters 13.7 Advantage 13.8 Limitations 13.9 Applications Further Reading 14 Arc Welding Processes: Gas Tungsten Arc Welding: Principle and System Components 14.1 Introduction 14.2 TIG Welding System 14.2.1 Power Source 14.2.2 Welding Torch 14.2.3 Filler Wire 14.2.4 Shielding Gas 14.3 Effect of Shielding Gases on GTAW Characteristics 14.3.1 Heat of Welding Arc 14.3.2 Arc Efficiency 14.3.3 Arc Stability 14.3.4 Flow Rate of Shielding Gas 14.3.5 Mixture of Shielding Gases 14.3.6 Advantages of Ar Over He as Shielding Gas Further Reading 15 Arc Welding Processes: Gas Tungsten Arc Welding: Electrode, Polarity and Pulse Variant 15.1 Electrode for TIG Torch 15.2 Welding Torch 15.2.1 Type of Welding Current and Polarity 15.2.2 Electrode Diameter and Welding Current 15.3 TIG Arc Initiation 15.3.1 Carbon Block Method 15.3.2 Field Start Method Using High-Frequency Unit 15.3.3 Pilot Arc Method 15.4 Maintenance of TIG Welding Arc 15.5 Pulse GTA Welding 15.5.1 Process Parameters of Pulse TIG Welding Further Reading 16 Arc Welding Processes: Gas Tungsten Arc Welding: Pulse Current, Hot Wire and Activated Flux-Assisted GTAW: Plasma Arc Welding: Principle, System, Application 16.1 Selection of Pulse Parameters for Pulse GTAW 16.1.1 Pulse Current 16.1.2 Pulse Frequency 16.2 Hot Wire Gas Tungsten Arc Welding 16.3 Activated Flux-Assisted Welding Processes 16.4 Introduction 16.5 Principle of PAW 16.6 Types of PAW 16.7 Advantage of PAW 16.8 Limitation of PAW Further Reading 17 Arc Welding Processes: Gas Metal Arc Welding: Principle, System, Parameters and Application 17.1 Fundamentals of GMA Welding 17.2 Power Source for GMA Welding 17.3 Shielding Gases for GMA Welding 17.4 Effect of MIG Welding Process Parameters 17.5 Metal Transfer in GMA Welding 17.6 Pulse GMAW Welding 17.7 Flux-Cored Arc Welding Process Further Reading Part V Solid Liquid Joining and Solid State Joining Processes 18 Brazing, Soldering and Friction Stir Welding 18.1 Fundamentals of Brazing and Soldering 18.2 Joints for Brazing and Soldering 18.3 Comparison of Brazing and Soldering 18.3.1 Melting Point of Filler 18.3.2 Strength of Joint 18.3.3 Ability to Withstand Under High Temperature Conditions 18.4 Application 18.5 Source of Heat for Joining 18.6 Limitation of Brazing and Soldering 18.7 Role of Flux in Brazing 18.8 Braze Welding 18.9 Friction Stir Welding Further Reading Part VI Heat Flow in Welding 19 Heat Flow and Performance of Weld Joints 19.1 Importance 19.2 Weld Thermal Cycle 19.2.1 Factors Affecting Welding Thermal Cycle 19.3 Cooling Rate 19.4 Calculations of Cooling Rate 19.5 Critical Cooling Rate (CCR) Under Welding Conditions 19.6 Peak Temperature and Heat Affected Zone 19.7 Solidification Rate 19.8 Residual Stresses 19.9 Residual Stresses in Welding 19.10 Mechanisms of Residual Stress Development 19.10.1 Differential Heating and Cooling 19.10.2 Differential Cooling Rate in Different Zone 19.10.3 Metallurgical Transformation 19.11 Effect of Residual Stresses 19.12 Controlling the Residual Stresses 19.12.1 Thermal Methods 19.12.2 Mechanical Methods Further Reading Part VII Welding Metallurgy 20 Welding Metallurgy 20.1 Introduction 20.2 Metallurgy and Metal Joining Processes 20.2.1 Adhesive Joining 20.2.2 Brazing and Soldering 20.2.3 Fusion and Solid State Joining Processes 20.3 Metallurgy and Properties of Joints by Fusion and Solid State Joining 20.4 Metal Strengthening Mechanism and Joint Properties 20.4.1 Fusion Welding 20.4.2 Solid State Joining 20.4.3 Brazing and Soldering Further Reading 21 Welding Metallurgy 21.1 Solidification of Weld Metal 21.2 Types of Solidification of Weld Metal 21.2.1 Epitaxial Solidification 21.2.2 Modes of Solidification 21.3 Effect of Welding Speed on Grain Structure of the Weld 21.4 Common Methods of Grain Refinement 21.4.1 Inoculation 21.4.2 Arc Pulsation 21.4.3 Mechanical Vibrations and Electromagnetic Force 21.4.4 Magnetic Arc Oscillation 21.4.5 Welding Parameter 21.5 Typical Metallurgical Discontinuity of the Weld 21.5.1 Micro-Segregation 21.5.2 Banding 21.6 Chemical Reaction in Welds 21.6.1 Welding Process and Cleanliness of the Weld 21.6.2 Effect of Atmospheric Gases on Weld Joint 21.6.3 Effect on Weld Compositions 21.6.4 Hydrogen in Weld Metal and Fluxes 21.7 Flux in Welding 21.7.1 Basicity of the Flux Further Reading 22 Welding Metallurgy: Physical Metallurgy of Welding: Steel, PH Hardenable and Work Hardening Metals 22.1 Relevance of Physical Metallurgy of Steel Welding 22.2 Fe–C Equilibrium Phase Diagram 22.3 Effect of Phases on Mechanical Properties 22.4 Phase Transformation 22.4.1 Time Temperature Transformation (TTT) Diagram 22.4.2 Continuous Cooling Transformation (C.C.T.) Diagram 22.5 Metallurgical Transformation in Fe–C System During Fusion Welding 22.5.1 Fusion Weld Zone (Autogenous Welding/Matching Filler and Electrode) 22.5.2 Fusion Welding Dissimilar Filler/Electrode for Steel and Cast Iron 22.5.3 Weld Zone Developed Using Solid State Joining Processes 22.6 Heat Affected Zone in Weld Joint of Fe–C System 22.6.1 The Partial Meting Zone 22.6.2 Thermo-Mechanically Affected Zone 22.6.3 Heat Affected Zone 22.7 HAZ of Base Metal Strengthened by Work Hardening 22.8 HAZ of Base Metals Strengthened by Precipitation Hardening 22.9 HAZ of Transformation Hardening Metals 22.9.1 Peak Temperature 22.9.2 High-Temperature Retention Period/Soaking Time 22.9.3 Cooling Rate 22.10 HAZ of Solid Solution and Dispersion Strengthened Metals Further Reading Part VIII Design of Weld Joints 23 Design of Welded Joints: Weld Failure Modes, Welding Symbols: Type of Welds, Joints, Welding Position 23.1 Introduction 23.2 Modes of Failure of the Weld Joints 23.3 Design of Weld Joints and Mechanical Properties 23.4 Factors Affecting the Performance of the Weld Joints 23.5 Design of Weld Joints and Loading Conditions 23.6 Need of Welding Symbols 23.7 Types of Weld Joints 23.8 Types of Weld 23.9 Welding Position 23.10 Rationale Behind Selection of Weld and Edge Preparation 23.10.1 Single Groove Weld 23.10.2 Double Groove Weld 23.11 Comparative Features of U and J Groove Geometry Further Reading 24 Design of Welded Joints: Weld Bead Geometry: Selection, Welding Parameters 24.1 Groove Weld 24.2 Fillet Weld 24.3 Bead Weld 24.4 Plug Welds 24.5 Welding and Weld Bead Geometry 24.5.1 Welding Current 24.5.2 Arc Voltage 24.5.3 Welding Speed Further Reading 25 Design of Welded Joints: Weld Joint Design for Static and Fatigue Loading 25.1 Design Aspects of Weld Joint 25.2 Design of Weld Joint for Static Loading 25.2.1 Design of Fillet Welds 25.2.2 Design of Butt Weld Joint 25.3 Design of Weld Joints for Fatigue Loading Further Reading 26 Design of Welded Joints 26.1 Fracture Under Fatigue Loading 26.2 Factors Affecting the Stages of Fatigue Fracture 26.2.1 Surface Crack Nucleation Stage 26.2.2 Stable Crack Growth Stage 26.2.3 Sudden Fracture (Unstable Crack Growth) 26.3 Crack Growth and Residual Fatigue Life 26.4 Factors Affecting the Fatigue Performance of Weld Joints 26.4.1 Service Load Conditions 26.4.2 Material Characteristics 26.4.3 Environment Further Reading 27 Design of Welded Joints 27.1 Welding and Fatigue 27.2 Welding Procedure 27.2.1 Edge Preparation 27.2.2 Welding Process 27.2.3 Welding Consumables 27.2.4 Post-Weld Heat Treatment 27.3 Improving the Fatigue Performance of the Weld Joints 27.3.1 Increasing Load-Carrying Capacity of the Weld Joint 27.3.2 Reducing Stress Raisers 27.3.3 Developing Compressive Residual Stress Further Reading Part IX Inspection and Testing of Weld Joints 28 Inspection and Testing of Weld Joint 28.1 Introduction 28.2 Destructive Test 28.2.1 Tensile Test 28.2.2 Bend Test 28.2.3 Hardness Test 28.2.4 Toughness Testing 28.2.5 Fatigue Behaviour of Weld Joint 28.2.6 Fracture Toughness 28.3 Non-destructive Testing (NDT) 28.3.1 Dye Penetrant Test 28.3.2 Magnetic Particle Testing 28.3.3 Ultrasonic Testing Further Reading Part X Weldability of Metals 29 Weldability of Metals: Characteristics of Metals and Weldability 29.1 Understanding Weldability 29.2 Weldability of Metals by Fusion Welding Processes 29.2.1 Composition 29.2.2 Affinity of Weld Metal with Atmospheric Gases 29.2.3 Melting Temperature 29.2.4 Solidification Temperature Range 29.2.5 Thermal Conductivity 29.2.6 Thermal Expansion Coefficient 29.2.7 Yield Strength 29.2.8 Toughness and Ductility 29.2.9 Thickness 29.3 Weldability of Metals by Solid State Joining Processes 29.3.1 Composition 29.3.2 Affinity with Atmospheric Gases 29.3.3 Thermal Conductivity and Thermal Expansion Coefficient 29.3.4 Yield Strength and Ductility 29.3.5 Work Hardening 29.4 Weldability of Steels 29.4.1 Weldability of Steel and Composition 29.4.2 Different Types of Steel and Welding 29.5 Common Problems in Steel Welding 29.5.1 Cracking of HAZ Due to Hardening 29.5.2 Cold Cracking Further Reading 30 Weldability of Metals: Weldability of Aluminium Alloys: Porosity, HAZ Softening and Solidification Cracking 30.1 Need of Aluminium Welding 30.1.1 Strengthening of Non-heat-Treatable Aluminium Alloys and Welding 30.1.2 Strengthening of Heat-Treatable Aluminium Alloys and Welding 30.2 Weldability of Aluminium Alloys 30.3 Typical Welding Problems in Aluminium Alloys 30.3.1 Porosity 30.3.2 Inclusion 30.3.3 Solidification Cracking Further Reading