دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مهندسی مکانیک ویرایش: 5 نویسندگان: Robert C. Juvinall, Kurt M. Marshek سری: ISBN (شابک) : 1118012895, 9781118012895 ناشر: Wiley سال نشر: 2011 تعداد صفحات: 929 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 29 مگابایت
کلمات کلیدی مربوط به کتاب مبانی طراحی مؤلفه ماشین: مهندسی مکانیک و پردازش مواد، نظریه مکانیزم ها و ماشین ها (TMM)
در صورت تبدیل فایل کتاب Fundamentals of Machine Component Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی طراحی مؤلفه ماشین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
آخرین ویرایش اصول طراحی اجزای ماشینی Juvinall/Marshek بر استراتژیهای حل مسئله و مهارتهای لازم برای پیمایش در میان مقادیر زیادی اطلاعات تمرکز دارد. اصلاحات در متن شامل پوشش Fatigue علاوه بر تمرکز مداوم بر روی اصول طراحی اجزا است. چندین ویژگی جدید دیگر شامل اهداف آموزشی جدیدی است که در ابتدای تمام فصل ها اضافه شده است. به روز رسانی مشکلات پایان فصل، حذف مشکلات ضعیف و اضافه شدن مشکلات جدید. برنامه های به روز شده برای ارز و ارتباط و موارد جدید در صورت لزوم. مشکلات و نمونه های تحلیل سیستم جدید؛ بخش های بهبود یافته مربوط به خستگی؛ پوشش گسترده تئوری شکست؛ و مراجع به روز شده
The latest edition of Juvinall/Marshek's Fundamentals of Machine Component Design focuses on sound problem solving strategies and skills needed to navigate through large amounts of information. Revisions in the text include coverage of Fatigue in addition to a continued concentration on the fundamentals of component design. Several other new features include new learning objectives added at the beginning of all chapters; updated end-of-chapter problems, the elimination of weak problems and addition of new problems; updated applications for currency and relevance and new ones where appropriate; new system analysis problems and examples; improved sections dealing with Fatigue; expanded coverage of failure theory; and updated references.
Copyright......Page 4
Preface......Page 5
Acknowledgments......Page 9
Contents......Page 11
PART 1 FUNDAMENTALS......Page 17
1.1 An Overview of the Subject......Page 19
1.2 Safety Considerations......Page 20
1.3 Ecological Considerations......Page 26
1.4 Societal Considerations......Page 27
1.5 Overall Design Considerations......Page 30
1.6 Systems of Units......Page 31
1.7 Methodology for Solving Machine Component Problems......Page 35
1.8 Work and Energy......Page 37
1.9 Power......Page 39
1.10 Conservation of Energy......Page 40
2.2 Equilibrium Equations and Free-Body Diagrams......Page 61
2.3 Beam Loading......Page 73
2.4 Locating Critical Sections—Force Flow Concept......Page 76
2.5 Load Division Between Redundant Supports......Page 78
2.6 Force Flow Concept Applied to Redundant Ductile Structures......Page 80
3.1 Introduction......Page 105
3.2 The Static Tensile Test—"Engineering" Stress–Strain Relationships......Page 106
3.3 Implications of the "Engineering" Stress–Strain Curve......Page 107
3.4 The Static Tensile Test—"True" Stress–Strain Relationships......Page 110
3.5 Energy-Absorbing Capacity......Page 112
3.6 Estimating Strength Properties from Penetration Hardness Tests......Page 113
3.7 Use of "Handbook" Data for Material Strength Properties......Page 116
3.9 Cast Iron......Page 117
3.10 Steel......Page 118
3.11 Nonferrous Alloys......Page 121
3.12 Plastics and Composites......Page 122
3.13 Materials Selection Charts......Page 128
3.14 Engineering Material Selection Process......Page 132
4.2 Axial Loading......Page 147
4.3 Direct Shear Loading......Page 149
4.4 Torsional Loading......Page 151
4.5 Pure Bending Loading, Straight Beams......Page 153
4.6 Pure Bending Loading, Curved Beams......Page 154
4.7 Transverse Shear Loading in Beams......Page 160
4.8 Induced Stresses, Mohr Circle Representation......Page 166
4.9 Combined Stresses—Mohr Circle Representation......Page 169
4.10 Stress Equations Related to Mohr's Circle......Page 172
4.11 Three-Dimensional Stresses......Page 174
4.12 Stress Concentration Factors, Kt......Page 178
4.13 Importance of Stress Concentration......Page 181
4.14 Residual Stresses Caused by Yielding—Axial Loading......Page 183
4.15 Residual Stresses Caused by Yielding—Bending and Torsional Loading......Page 187
4.16 Thermal Stresses......Page 189
4.17 Importance of Residual Stresses......Page 192
5.1 Introduction......Page 210
5.2 Strain Definition, Measurement, and Mohr Circle Representation......Page 211
5.3 Analysis of Strain—Equiangular Rosettes......Page 213
5.4 Analysis of Strain—Rectangular Rosettes......Page 215
5.5 Elastic Stress–Strain Relationships and Three-Dimensional Mohr Circles......Page 218
5.6 Deflection and Spring Rate—Simple Cases......Page 220
5.7 Beam Deflection......Page 222
5.8 Determining Elastic Deflections by Castigliano's Method......Page 225
5.9 Redundant Reactions by Castigliano's Method......Page 238
5.10 Euler Column Buckling—Elastic Instability......Page 243
5.11 Effective Column Length for Various End Conditions......Page 245
5.12 Column Design Equations—J. B. Johnson Parabola......Page 246
5.13 Eccentric Column Loading—the Secant Formula......Page 250
5.15 Other Types of Buckling......Page 252
5.16 Finite Element Analysis......Page 254
6.1 Introduction......Page 264
6.2 Types of Failure......Page 266
6.3 Fracture Mechanics—Basic Concepts......Page 267
6.4 Fracture Mechanics—Applications......Page 269
6.5 The "Theory" of Static Failure Theories......Page 279
6.7 Maximum-Shear-Stress Theory......Page 281
6.8 Maximum-Distortion-Energy Theory (Maximum-Octahedral-Shear-Stress Theory)......Page 282
6.9 Mohr Theory and Modified Mohr Theory......Page 285
6.10 Selection and Use of Failure Theories......Page 286
6.11 Safety Factors—Concept and Definition......Page 288
6.12 Safety Factors—Selection of a Numerical Value......Page 290
6.13 Reliability......Page 292
6.14 Normal Distributions......Page 294
6.15 Interference Theory of Reliability Prediction......Page 296
7.1 Introduction......Page 304
7.2 Stress and Deflection Caused by Linear and Bending Impact......Page 306
7.3 Stress and Deflection Caused by Torsional Impact......Page 314
7.4 Effect of Stress Raisers on Impact Strength......Page 317
8.2 Basic Concepts......Page 328
8.3 Standard Fatigue Strengths (S’n) for Rotating Bending......Page 330
8.4 Fatigue Strengths for Reversed Bending and Reversed Axial Loading......Page 336
8.5 Fatigue Strength for Reversed Torsional Loading......Page 337
8.6 Fatigue Strength for Reversed Biaxial Loading......Page 338
8.7 Influence of Surface and Size on Fatigue Strength......Page 339
8.9 Effect of Mean Stress on Fatigue Strength......Page 342
8.10 Effect of Stress Concentration with Completely Reversed Fatigue Loading......Page 350
8.11 Effect of Stress Concentration with Mean Plus Alternating Loads......Page 353
8.12 Fatigue Life Prediction with Randomly Varying Loads......Page 360
8.13 Effect of Surface Treatments on the Fatigue Strength of a Part......Page 364
8.14 Mechanical Surface Treatments—Shot Peening and Others......Page 366
8.16 Fatigue Crack Growth......Page 367
8.17 General Approach for Fatigue Design......Page 372
9.2 Corrosion: Fundamentals......Page 388
9.3 Corrosion: Electrode and Electrolyte Heterogeneity......Page 391
9.4 Design for Corrosion Control......Page 392
9.5 Corrosion Plus Static Stress......Page 396
9.6 Corrosion Plus Cyclic Stress......Page 399
9.8 Types of Wear......Page 400
9.9 Adhesive Wear......Page 401
9.10 Abrasive Wear......Page 403
9.11 Fretting......Page 404
9.12 Analytical Approach to Wear......Page 405
9.13 Curved-Surface Contact Stresses......Page 408
9.14 Surface Fatigue Failures......Page 415
9.15 Closure......Page 417
PART 2 APPLICATIONS......Page 425
10.1 Introduction......Page 427
10.2 Thread Forms, Terminology, and Standards......Page 428
10.3 Power Screws......Page 433
10.4 Static Screw Stresses......Page 441
10.5 Threaded Fastener Types......Page 446
10.7 Bolt Tightening and Initial Tension......Page 448
10.8 Thread Loosening and Thread Locking......Page 453
10.9 Bolt Tension with External Joint-Separating Force......Page 455
10.10 Bolt (or Screw) Selection for Static Loading......Page 460
10.11 Bolt (or Screw) Selection for Fatigue Loading: Fundamentals......Page 467
10.12 Bolt Selection for Fatigue Loading: Using Special Test Data......Page 474
10.13 Increasing Bolted-Joint Fatigue Strength......Page 477
11.2 Rivets......Page 488
11.3 Welding Processes......Page 490
11.4 Welded Joints Subjected to Static Axial and Direct Shear Loading......Page 494
11.5 Welded Joints Subjected to Static Torsional and Bending Loading......Page 497
11.6 Fatigue Considerations in Welded Joints......Page 502
11.8 Adhesives......Page 505
12.2 Torsion Bar Springs......Page 513
12.3 Coil Spring Stress and Deflection Equations......Page 514
12.4 Stress and Strength Analysis for Helical Compression Springs—Static Loading......Page 520
12.5 End Designs of Helical Compression Springs......Page 523
12.6 Buckling Analysis of Helical Compression Springs......Page 524
12.7 Design Procedure for Helical Compression Springs—Static Loading......Page 525
12.8 Design of Helical Compression Springs for Fatigue Loading......Page 529
12.9 Helical Extension Springs......Page 537
12.10 Beam Springs (Including Leaf Springs)......Page 538
12.11 Torsion Springs......Page 544
12.12 Miscellaneous Springs......Page 545
13.2 Types of Sliding Bearings......Page 562
13.3 Types of Lubrication......Page 563
13.4 Basic Concepts of Hydrodynamic Lubrication......Page 564
13.5 Viscosity......Page 566
13.7 Petroff's Equation for Bearing Friction......Page 571
13.8 Hydrodynamic Lubrication Theory......Page 573
13.9 Design Charts for Hydrodynamic Bearings......Page 577
13.10 Lubricant Supply......Page 584
13.11 Heat Dissipation and Equilibrium Oil Film Temperature......Page 587
13.12 Bearing Materials......Page 588
13.13 Hydrodynamic Bearing Design......Page 589
13.14 Boundary and Mixed-Film Lubrication......Page 595
13.15 Thrust Bearings......Page 597
13.16 Elastohydrodynamic Lubrication......Page 598
14.1 Comparison of Alternative Means for Supporting Rotating Shafts......Page 603
14.2 History of Rolling-Element Bearings......Page 607
14.3 Rolling-Element Bearing Types......Page 608
14.4 Design of Rolling-Element Bearings......Page 612
14.5 Fitting of Rolling-Element Bearings......Page 616
14.6 "Catalogue Information" for Rolling-Element Bearings......Page 617
14.7 Bearing Selection......Page 620
14.8 Mounting Bearings to Provide Properly for Thrust Load......Page 630
15.1 Introduction and History......Page 636
15.2 Geometry and Nomenclature......Page 637
15.3 Interference and Contact Ratio......Page 645
15.4 Gear Force Analysis......Page 650
15.5 Gear-Tooth Strength......Page 653
15.6 Basic Analysis of Gear-Tooth-Bending Stress (Lewis Equation)......Page 654
15.7 Refined Analysis of Gear-Tooth-Bending Strength: Basic Concepts......Page 656
15.8 Refined Analysis of Gear-Tooth-Bending Strength: Recommended Procedure......Page 658
15.9 Gear-Tooth Surface Durability—Basic Concepts......Page 664
15.10 Gear-Tooth Surface Fatigue Analysis—Recommended Procedure......Page 667
15.11 Spur Gear Design Procedures......Page 672
15.13 Gear Trains......Page 677
16.1 Introduction......Page 691
16.2 Helical-Gear Geometry and Nomenclature......Page 694
16.3 Helical-Gear Force Analysis......Page 697
16.4 Helical-Gear-Tooth-Bending and Surface Fatigue Strengths......Page 700
16.5 Crossed Helical Gears......Page 701
16.6 Bevel Gear Geometry and Nomenclature......Page 702
16.7 Bevel Gear Force Analysis......Page 704
16.8 Bevel Gear-Tooth-Bending and Surface Fatigue Strengths......Page 706
16.9 Bevel Gear Trains; Differential Gears......Page 708
16.10 Worm Gear Geometry and Nomenclature......Page 710
16.11 Worm Gear Force and Efficiency Analysis......Page 712
16.12 Worm-Gear-Bending and Surface Fatigue Strengths......Page 717
16.13 Worm Gear Thermal Capacity......Page 719
17.1 Introduction......Page 732
17.3 Mounting Parts onto Rotating Shafts......Page 733
17.4 Rotating-Shaft Dynamics......Page 736
17.5 Overall Shaft Design......Page 741
17.6 Keys, Pins, and Splines......Page 746
17.7 Couplings and Universal Joints......Page 748
18.2 Disk Clutches......Page 762
18.3 Disk Brakes......Page 768
18.4 Energy Absorption and Cooling......Page 769
18.5 Cone Clutches and Brakes......Page 771
18.6 Short-Shoe Drum Brakes......Page 772
18.7 External Long-Shoe Drum Brakes......Page 776
18.8 Internal Long-Shoe Drum Brakes......Page 783
18.9 Band Brakes......Page 785
18.10 Materials......Page 788
19.1 Introduction......Page 798
19.2 Flat Belts......Page 799
19.3 V-Belts......Page 801
19.5 Roller Chains......Page 805
19.6 Inverted-Tooth Chains......Page 808
19.7 History of Hydrodynamic Drives......Page 809
19.8 Fluid Couplings......Page 810
19.9 Hydrodynamic Torque Converters......Page 814
20.1 Introduction......Page 823
20.2 Description of Original Hydra-Matic Transmission......Page 824
20.3 Free-Body Diagram Determination of Gear Ratios and Component Loads......Page 827
20.4 Gear Design Considerations......Page 831
20.5 Brake and Clutch Design Considerations......Page 832
20.6 Miscellaneous Design Considerations......Page 833
A-1a Conversion Factors for British Gravitational, English, and SI Units......Page 837
A-1b Conversion Factor Equalities Listed by Physical Quantity......Page 838
A-2a Standard SI Prefixes......Page 840
A-2b SI Units and Symbols......Page 841
A-5 Suggested SI Prefixes for Angular-Deflection Calculations......Page 842
B-1a Properties of Sections......Page 843
B-1b Dimensions and Properties of Steel Pipe and Tubing Sections......Page 844
B-2 Mass and Mass Moments of Inertia of Homogeneous Solids......Page 846
C-1 Physical Properties of Common Metals......Page 847
C-2 Tensile Properties of Some Metals......Page 848
C-3a Typical Mechanical Properties and Uses of Gray Cast Iron......Page 849
C-3b Mechanical Properties and Typical Uses of Malleable Cast Iron......Page 850
C-3c Average Mechanical Properties and Typical Uses of Ductile (Nodular) Iron......Page 851
C-4a Mechanical Properties of Selected Carbon and Alloy Steels......Page 852
C-4b Typical Uses of Plain Carbon Steels......Page 854
C-5a Properties of Some Water-Quenched and Tempered Steels......Page 855
C-5b Properties of Some Oil-Quenched and Tempered Carbon Steels......Page 856
C-5c Properties of Some Oil-Quenched and Tempered Alloy Steels......Page 857
C-6 Effect of Mass on Strength Properties of Steel......Page 858
C-7 Mechanical Properties of Some Carburizing Steels......Page 859
C-8 Mechanical Properties of Some Wrought Stainless Steels......Page 860
C-9 Mechanical Properties of Some Iron-Based Superalloys......Page 861
C-10 Mechanical Properties, Characteristics, and Typical Uses of Some Wrought Aluminum Alloys......Page 862
C-11 Tensile Properties, Characteristics, and Typical Uses of Some Cast-Aluminum Alloys......Page 863
C-12 Temper Designations for Aluminum and Magnesium Alloys......Page 864
C-13 Mechanical Properties of Some Copper Alloys......Page 865
C-14 Mechanical Properties of Some Magnesium Alloys......Page 866
C-15 Mechanical Properties of Some Nickel Alloys......Page 867
C-16 Mechanical Properties of Some Wrought-Titanium Alloys......Page 868
C-17 Mechanical Properties of Some Zinc Casting Alloys......Page 869
C-18a Representative Mechanical Properties of Some Common Plastics......Page 870
C-18b Properties of Some Common Glass-Reinforced and Unreinforced Thermoplastic Resins......Page 871
C-18c Typical Applications of Common Plastics......Page 872
C-19 Material Classes and Selected Members of Each Class......Page 873
C-20 Designer's Subset of Engineering Materials......Page 874
C-21 Processing Methods Used Most Frequently with Different Materials......Page 875
C-22 Joinability of Materials......Page 876
C-23 Materials for Machine Components......Page 877
C-24 Relations Between Failure Modes and Material Properties......Page 879
D-1 Cantilever Beams......Page 880
D-2 Simply Supported Beams......Page 881
D-3 Beams with Fixed Ends......Page 883
E-1 Fits and Tolerances for Holes and Shafts......Page 884
E-2 Standard Tolerances for Cylindrical Parts......Page 885
E-3 Tolerance Grades Produced from Machining Processes......Page 886
F-2 Overview of Data in MIL-HDBK-5J......Page 887
F-3 Advanced Formulas and Concepts Used in MIL-HDBK-5J......Page 889
F-4 Mechanical and Physical Properties of 2024 Aluminum Alloy......Page 894
F-5 Fracture Toughness and Other Miscellaneous Properties......Page 899
F-6 Conclusion......Page 903
G-1 Vectors: A Review......Page 904
G-2 Force and Moments Equilibrium......Page 905
H-1 Standard Normal Distribution Table......Page 908
H-3 Linear Combination of Normal Distributions......Page 911
I-1 S-N Formula......Page 913
I-2 Illustrative Example......Page 914
J-1 Normal Spur-Gear Quantities......Page 915
J-2 Actual Quantities......Page 917
J-3 Illustrative Example......Page 918
Index......Page 920