ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fundamentals of Ionizing Radiation Dosimetry

دانلود کتاب مبانی دزیمتری پرتوهای یونیزان

Fundamentals of Ionizing Radiation Dosimetry

مشخصات کتاب

Fundamentals of Ionizing Radiation Dosimetry

ویرایش:  
نویسندگان: , , , ,   
سری:  
ISBN (شابک) : 9783527343522, 3527343539 
ناشر:  
سال نشر: 2017 
تعداد صفحات: [1351] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 50 Mb 

قیمت کتاب (تومان) : 45,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Fundamentals of Ionizing Radiation Dosimetry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی دزیمتری پرتوهای یونیزان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Title Page
Copyright
Preface
Quantities and Symbols1
	Roman letter symbols
	Greek letter symbols
	Mathematical symbols
Acronyms
Chapter 1: Background and Essentials
	1.1 Introduction
	1.2 Types and Sources of Ionizing Radiation
	1.3 Consequences of the Random Nature of Radiation
	1.4 Interaction Cross Sections
	1.5 Kinematic Relativistic Expressions
	1.6 Atomic Relaxations
	1.7 Evaluation of Uncertainties
	Exercises
Chapter 2: Charged-Particle Interactions with Matter
	2.1 Introduction
	2.2 Types of Charged-Particle Interactions
	2.3 Elastic Scattering
	2.4 Inelastic Scattering and Energy Loss
	2.5 Radiative Energy Loss: Bremsstrahlung
	2.6 Total Stopping Power
	2.7 Range of Charged Particles
	2.8 Number and Energy Distributions of Secondary Particles
	2.9 Nuclear Stopping Power and Interactions by Heavy Charged Particles
	2.10 The W-Value (Mean Energy to Create an Ion Pair)
	2.11 Addendum – Derivation of Expressions for the Elastic and Inelastic Scattering of Heavy Charged Particles
	Exercises
Chapter 3: Uncharged-Particle Interactions with Matter
	3.1 Introduction
	3.2 Photon Interactions with Matter
	3.3 Photoelectric Effect
	3.4 Thomson Scattering
	3.5 Rayleigh Scattering (Coherent Scattering)
	3.6 Compton Scattering (Incoherent Scattering)
	3.7 Pair Production and Triplet Production
	3.8 Positron Annihilation
	3.9 Photonuclear Interactions
	3.10 Photon Interaction Coefficients
	3.11 Neutron Interactions
	Exercises
Chapter 4: Field and Dosimetric Quantities, Radiation Equilibrium – Definitions and Inter-Relations
	4.1 Introduction
	4.2 Stochastic and Non-stochastic Quantities
	4.3 Radiation Field Quantities and Units
	4.4 Distributions of Field Quantities
	4.5 Quantities Describing Radiation Interactions
	4.6 Dosimetric Quantities
	4.7 Relationships Between Field and Dosimetric Quantities
	4.8 Radiation Equilibrium (RE)
	4.9 Charged-Particle Equilibrium (CPE)
	4.10 Partial Charged-Particle Equilibrium (PCPE)
	4.11 Summary of the Inter-Relations between Fluence, Kerma, Cema, and Dose
	4.12 Addendum – Example Calculations of (Net) Energy Transferred and Imparted
	Exercises
Chapter 5: Elementary Aspects of the Attenuation of Uncharged Particles
	5.1 Introduction
	5.2 Exponential Attenuation
	5.3 Narrow-Beam Attenuation
	5.4 Broad-Beam Attenuation
	5.5 Spectral Effects
	5.6 The Build-up Factor
	5.7 Divergent Beams – The Inverse Square Law
	5.8 The Scaling Theorem
	Exercises
Chapter 6: Macroscopic Aspects of the Transport of Radiation Through Matter
	6.1 Introduction
	6.2 The Radiation Transport Equation Formalism
	6.3 Introduction to Monte Carlo Derived Distributions
	6.4 Electron Beam Distributions
	6.5 Protons and Heavier Charged-Particle Beam Distributions
	6.6 Photon Beam Distributions
	6.7 Neutron Beam Distributions
	Exercises
Chapter 7: Characterization of Radiation Quality
	7.1 Introduction
	7.2 General Aspects of Radiation Spectra. Mean Energy
	7.3 Beam Quality Specification for Kilovoltage x-ray Beams
	7.4 Megavoltage Photon Beam Quality Specification
	7.5 High-Energy Electron Beam Quality Specification
	7.6 Beam Quality Specification of Protons and Heavier Charged Particles
	7.7 Energy Spectra Determination
	Exercises
Chapter 8: The Monte Carlo Simulation of the Transport of Radiation Through Matter
	8.1 Introduction
	8.2 Basics of the Monte Carlo Method (MCM)
	8.3 Simulation of Radiation Transport
	8.4 Monte Carlo Codes and Systems in the Public Domain
	8.5 Monte Carlo Applications in Radiation Dosimetry
	8.6 Other Monte Carlo Developments
	Exercises
Chapter 9: Cavity Theory
	9.1 Introduction
	9.2 Cavities That Are Small Compared to Secondary Electron Ranges
	9.3 Stopping-Power Ratios
	9.4 Cavities That Are Large Compared to Electron Ranges
	9.5 General or Burlin Cavity Theory
	9.6 The Fano Theorem
	9.7 Practical Detectors: Deviations from ‘Ideal’ Cavity Theory Conditions
	9.8 Summary and Validation of Cavity Theory
	Exercises
Chapter 10: Overview of Radiation Detectors and Measurements
	10.1 Introduction
	10.2 Detector Response and Calibration Coefficient
	10.3 Absolute, Reference, and Relative Dosimetry
	10.4 General Characteristics and Desirable Properties of Detectors
	10.5 Brief Description of Various Types of Detectors
	10.6 Addendum – The Role of the Density Effect and I-Values in the Medium-to-Water Stopping-Power Ratio
	Exercises
Chapter 11: Primary Radiation Standards
	11.1 Introduction
	11.2 Free-Air Ionization Chambers
	11.3 Primary Cavity Ionization Chambers
	11.4 Absorbed-Dose Calorimeters
	11.5 Fricke Chemical Dosimeter
	11.6 International Framework for Traceability in Radiation Dosimetry
	11.7 Addendum – Experimental Derivation of Fundamental Dosimetric Quantities
	Exercises
Chapter 12: Ionization Chambers
	12.1 Introduction
	12.2 Types of Ionization Chamber
	12.3 Measurement of Ionization Current
	12.4 Ion Recombination
	12.5 Addendum – Air Humidity in Dosimetry
	Exercises
Chapter 13: Chemical Dosimeters
	13.1 Introduction
	13.2 Radiation Chemistry in Water
	13.3 Chemical Heat Defect
	13.4 Ferrous Sulfate Dosimeters
	13.5 Alanine Dosimetry
	13.6 Film Dosimetry
	13.7 Gel Dosimetry
	Exercises
Chapter 14: Solid-State Detector Dosimetry
	14.1 Introduction
	14.2 Thermoluminescence Dosimetry
	14.3 Optically-Stimulated Luminescence Dosimeters
	14.4 Scintillation Dosimetry
	14.5 Semiconductor Detectors for Dosimetry
	Exercises
Chapter 15: Reference Dosimetry for External Beam Radiation Therapy
	15.1 Introduction
	15.2 A Generalized Formalism
	15.3 Practical Implementation of Formalisms
	15.4 Quantities Entering into the Various Formalisms
	15.5 Accuracy of Radiation Therapy Reference Dosimetry
	15.6 Addendum–Perturbation Correction Factors
	Exercises
Chapter 16: Dosimetry of Small and Composite Radiotherapy Photon Beams
	16.1 Introduction
	16.2 Overview
	16.3 The Physics of Small Megavoltage Photon Beams
	16.4 Dosimetry of Small Beams
	16.5 Detectors for Small-Beam Dosimetry
	16.6 Dosimetry of Composite Fields
	16.7 Addendum—Measurement in Plastic Phantoms
	Exercises
Chapter 17: Reference Dosimetry for Diagnostic and Interventional Radiology
	17.1 Introduction
	17.2 Specific Quantities and Units
	17.3 Formalism for Reference Dosimetry
	17.4 Quantities Entering into the Formalism
	Exercises
Chapter 18: Absorbed Dose Determination for Radionuclides
	18.1 Introduction
	18.2 Radioactivity Quantities and Units
	18.3 Dosimetry of Unsealed Radioactive Sources
	18.4 Dosimetry of Sealed Radioactive Sources
	18.5 Addendum–The Reciprocity Theorem for Unsealed Radionuclide Dosimetry
	Exercises
Chapter 19: Neutron Dosimetry
	19.1 Introduction
	19.2 Neutron Interactions in Tissue and Tissue-Equivalent Materials
	19.3 Neutron Sources
	19.4 Principles of Mixed-Field Dosimetry
	19.5 Neutron Detectors
	19.6 Reference Dosimetry of Neutron Radiotherapy Beams
	Exercises
Appendix A: Data Tables
	A.1 Fundamental and Derived Physical Constants
	A.2 Data of Elements
	A.3 Data for Compounds and Mixtures
	A.4 Atomic Binding Energies for Elements
	A.5 Atomic Fluorescent X-ray Mean Energies and Yields for Elements
	A.6 Interaction Data for Electrons and Positrons (Electronic Form)
	A.9 Neutron Kerma Coefficients (Electronic Form)
References
Index
End User License Agreement




نظرات کاربران