ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fundamentals of Ground Improvement Engineering

دانلود کتاب مبانی مهندسی بهسازی زمین

Fundamentals of Ground Improvement Engineering

مشخصات کتاب

Fundamentals of Ground Improvement Engineering

ویرایش: 1 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0415695120, 9780415695121 
ناشر: CRC Press 
سال نشر: 2023 
تعداد صفحات: 431 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 297 مگابایت 

قیمت کتاب (تومان) : 39,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 24


در صورت تبدیل فایل کتاب Fundamentals of Ground Improvement Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی مهندسی بهسازی زمین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مبانی مهندسی بهسازی زمین

بهسازی زمین یکی از پویاترین و سریعترین حوزه های مهندسی ژئوتکنیک و ساخت و ساز در 40 سال گذشته بوده است. نیاز به توسعه سایت‌هایی با خاک‌های حاشیه‌ای، بهسازی زمین را به یک جزء اصلی و مهم برنامه‌های درسی مهندسی ژئوتکنیک تبدیل کرده است. اصول مهندسی بهسازی زمین به موثرترین و جدیدترین تکنیک ها برای بهبود زمین می پردازد. روش‌های کلیدی بهبود زمین معرفی شده‌اند که درک کاملی از تئوری، اصول طراحی و رویکردهای ساخت‌وساز که زیربنای هر روش هستند را در اختیار خوانندگان قرار می‌دهند. موضوعات اصلی تراکم، تزریق نفوذ، روش های ارتعاشی، اختلاط خاک، تثبیت و انجماد، دیوارهای برش، آبگیری، تحکیم، ژئوسنتتیک، تزریق جت، انجماد زمین، تزریق تراکم، و حفظ خاک است. این کتاب برای دانشجویان مقطع کارشناسی و کارشناسی ارشد و همچنین افرادی که به دنبال پیشینه اساسی در این تکنیک ها هستند ایده آل است. مشکلات متعدد، با مثال های کار شده، عکس ها، شماتیک ها، نمودارها و نمودارها آن را به یک مرجع و ابزار آموزشی عالی تبدیل کرده است.


توضیحاتی درمورد کتاب به خارجی

Ground improvement has been one of the most dynamic and rapidly evolving areas of geotechnical engineering and construction over the past 40 years. The need to develop sites with marginal soils has made ground improvement an increasingly important core component of geotechnical engineering curricula. Fundamentals of Ground Improvement Engineering addresses the most effective and latest cutting-edge techniques for ground improvement. Key ground improvement methods are introduced that provide readers with a thorough understanding of the theory, design principles, and construction approaches that underpin each method. Major topics are compaction, permeation grouting, vibratory methods, soil mixing, stabilization and solidification, cutoff walls, dewatering, consolidation, geosynthetics, jet grouting, ground freezing, compaction grouting, and earth retention. The book is ideal for undergraduate and graduate-level university students, as well as practitioners seeking fundamental background in these techniques. The numerous problems, with worked examples, photographs, schematics, charts and graphs make it an excellent reference and teaching tool.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface and Acknowledgments: Fundamentals of Ground Improvement Engineering
Chapter 1 Introduction to ground improvement engineering
	1.1 Introduction
	1.2 Improvements in soil behavior
		1.2.1 Shear strength
		1.2.2 Compressibility
		1.2.3 Hydraulic conductivity
		1.2.4 Liquefaction potential
		1.2.5 Shrink/swell behavior
		1.2.6 Variability
	1.3 Overview of ground improvement techniques
		1.3.1 Compaction: shallow methods
		1.3.2 Compaction: deep methods
		1.3.3 Soil mixing and injection methods
		1.3.4 Stabilization and solidification
		1.3.5 Grouting
		1.3.6 Dewatering
		1.3.7 Consolidation
		1.3.8 Mechanically stabilized earth
		1.3.9 In situ barriers
		1.3.10 Future developments in ground improvement
	1.4 Importance of construction
	1.5 Problems
	References
Chapter 2 Geotechnical fundamentals
	2.1 Definitions
		2.1.1 Water content
		2.1.2 Density, unit weight, density of solids, and specific gravity
	2.2 Water flow in soil
		2.2.1 Darcy’s law and one-dimensional flow
		2.2.2 Flownets and two-dimensional flow
		2.2.3 Quantity of water flowing through soil
		2.2.4 Porewater pressure with water flowing through soil
		2.2.5 Uplift pressures
		2.2.6 Seepage force
		2.2.7 Capillary rise of groundwater
	2.3 Effective stress
		2.3.1 Effective stress equation
		2.3.2 Importance of effective stress
	2.4 Shear strength
		2.4.1 The concept of soil strength
		2.4.2 Laboratory evaluation of shear strength
			2.4.2.1 Direct shear testing
			2.4.2.2 Triaxial testing
		2.4.3 Shear strength summary
	2.5 Lateral earth pressures
		2.5.1 Active earth pressure
		2.5.2 Passive earth pressure
		2.5.3 At-rest (K0) earth pressure
		2.5.4 Amount of movement to develop active, passive, and at-rest earth pressures
	2.6 Field investigations
		2.6.1 Drilling methods
		2.6.2 Sampling methods
		2.6.3 In situ test methods
			2.6.3.1 SPT
			2.6.3.2 CPT
	2.7 Problems
	References
Chapter 3 Fundamentals of geosynthetics in ground improvement
	3.1 Introduction
		3.1.1 Geotextiles
		3.1.2 Geogrids
		3.1.3 Geocells
		3.1.4 Geofibers
		3.1.5 Historical notes
	3.2 Properties of geosynthetics
		3.2.1 Tensile strengths
		3.2.2 Permittivity (used in drainage)
		3.2.3 Transmissivity (used in drainage)
		3.2.4 Pore size determination (used in filtration)
		3.2.5 Interface friction (used in mechanically stabilized earth and steepened slope design)
		3.2.6 Survivability and durability
	3.3 Geotextile filter design
		3.3.1 Introduction
		3.3.2 Design procedure
	3.4 Summary
	3.5 Problems
	References
Chapter 4 Compaction
	4.1 Introduction
	4.2 Theoretical underpinnings of compaction
	4.3 Property improvements resulting from compaction
		4.3.1 Strength
		4.3.2 Compressibility
		4.3.3 Hydraulic conductivity (permeability)
		4.3.4 Optimizing compacted soil properties
	4.4 Shallow compaction
		4.4.1 Field compaction equipment
		4.4.2 Construction aspects of shallow compaction
	4.5 Rapid impact compaction
		4.5.1 Introduction
		4.5.2 Applications
		4.5.3 Construction vibrations
	4.6 Deep dynamic compaction
		4.6.1 Introduction
		4.6.2 Design considerations for dynamic compaction
		4.6.3 Verification of compaction effectiveness
		4.6.4 Applications of deep dynamic compaction
		4.6.5 Construction vibrations
	4.7 Deep vibratory methods
		4.7.1 Introduction to deep vibratory methods
		4.7.2 Vibrocompaction
		4.7.3 Vibroreplacement
	4.8 Aggregate piers
	4.9 Problems
	References
Chapter 5 Consolidation
	5.1 Introduction
	5.2 Consolidation fundamentals
	5.3 Stress distribution
	5.4 Design approach
		5.4.1 Time rate of consolidation
		5.4.2 Preloading
	5.5 Speeding consolidation with vertical drains
		5.5.1 Introduction
		5.5.2 Consolidation with vertical drains
	5.6 Additional vertical drain considerations
		5.6.1 Vertical drain types
		5.6.2 Effect of PVD installation patterns
		5.6.3 Effect of soil disturbance (smear)
	5.7 Vacuum consolidation
	5.8 Combined vacuum consolidation and preloading with vertical drains
	5.9 Nature’s consolidation preloading
	5.10 Summary
	5.11 Problems
	References
Chapter 6 Soil mixing
	6.1 Introduction
	6.2 History of soil mixing
	6.3 Definitions, types, and classifications
		6.3.1 Depth of soil mixing
		6.3.2 Methods of mixing reagents
		6.3.3 Equipment used for soil mixing
		6.3.4 Treatment patterns
	6.4 Applications
		6.4.1 Shear walls
		6.4.2 Aerial bearing capacity improvement
		6.4.3 Hydraulic cutoff walls
		6.4.4 Excavation support walls
		6.4.5 Environmental soil mixing
		6.4.6 Geoenvironmental soil mixing
	6.5 Design considerations
		6.5.1 Determine project needs
		6.5.2 Select target design parameters
			6.5.2.1 Strength
			6.5.2.2 Hydraulic conductivity
			6.5.2.3 Leachability
		6.5.3 Reagent addition rates
		6.5.4 Reagent (binder) types and selection
		6.5.5 Develop and evaluate construction objectives
		6.5.6 Construction
		6.5.7 Sampling
		6.5.8 In situ testing
	6.6 Problems
	References
Chapter 7 Grouting
	7.1 Introduction
	7.2 History of grouting
		7.2.1 History of suspension grouting
		7.2.2 History of solution grouting
	7.3 Grouting types and classifications
		7.3.1 Suspension grouts
		7.3.2 Common grout mixtures for suspension grouting
		7.3.3 Neat cement grout
		7.3.4 Balanced stable grout
		7.3.5 Microfine or ultrafine cement grouting
	7.4 Solution grouts
		7.4.1 Types of solution grouts
	7.5 Permeation (penetration) grouting
	7.6 Fracture grouting
	7.7 Compensation grouting
	7.8 Void grouting
	7.9 Grout properties
		7.9.1 Set (gel) time
		7.9.2 Stability
		7.9.3 Viscosity
		7.9.4 Permanence
		7.9.5 Toxicity
	7.10 Applications
	7.11 Design considerations
		7.11.1 Understanding grout physics and preliminary planning
		7.11.2 Geological conditions and site investigations
		7.11.3 Interaction between grout and soil/rock
		7.11.4 Grout mix design
	7.12 Construction
		7.12.1 Pre-grouting
		7.12.2 Suspension and solution grouting
		7.12.3 Drill rigs
		7.12.4 Mixing (batch) plants
		7.12.5 Pumping systems
		7.12.6 Packers
	7.13 Quality control
		7.13.1 Flow measurements
		7.13.2 Monitoring
		7.13.3 Automated Monitoring Equipment
	7.14 Void grouting, a special application
	7.15 Problems
	References
Chapter 8 Slurry trench cutoff walls
	8.1 Introduction and overview
		8.1.1 Functions of slurry trench cutoff walls
		8.1.2 History of slurry trench cutoff walls
		8.1.3 Slurry trench cutoff walls as a ground improvement technique
	8.2 SB slurry trench Cutoff Walls
		8.2.1 Excavation stability
		8.2.2 Slurry property measurement
		8.2.3 SB backfill design
		8.2.4 Excavation techniques
	8.3 CB slurry trench cutoff walls
		8.3.1 CB mixtures and properties
		8.3.2 Role of the bentonite in CB mixtures
		8.3.3 Volume change behavior
	8.4 Structural slurry walls (diaphragm walls)
	8.5 Problems
	References
Chapter 9 Ground improvement using geosynthetics
	9.1 Introduction
	9.2 Geosynthetic ground improvement
		9.2.1 Introduction
		9.2.2 Geosynthetic types used in ground improvement
		9.2.3 Geosynthetic applications in ground improvement
	9.3 Properties of geosynthetics
		9.3.1 Introduction
		9.3.2 Tensile strength
		9.3.3 Interface friction
		9.3.4 Durability
		9.3.5 Geotextile survivability
	9.4 Road base stabilization (Corps of Engineers methods)
		9.4.1 Introduction
		9.4.2 Unpaved road improvement using geosynthetics
		9.4.3 Paved road improvement using geosynthetics
		9.4.4 Geofibers in roads
	9.5 Embankments over soft ground
		9.5.1 Introduction
		9.5.2 Conventional construction of embankments
		9.5.3 Geosynthetic usage in embankment construction
		9.5.4 Design procedure
			9.5.4.1 Slope stability
			9.5.4.2 Sliding of soil on top of geosynthetic
			9.5.4.3 Geosynthetic rupture due to sliding
			9.5.4.4 Pullout of the geosynthetic
			9.5.4.5 Bearing capacity
			9.5.4.6 Settlement
			9.5.4.7 Additional checks
		9.5.5 Instrumentation
		9.5.6 Construction guidance
		9.5.7 Alternative procedures
	9.6 Underfooting reinforcement with rolled geosynthetics
		9.6.1 Introduction
		9.6.2 Design procedure
		9.6.3 Construction
	9.7 Underfooting reinforcement with geocells
		9.7.1 Introduction
		9.7.2 Ultimate load calculation
		9.7.3 State of practice
		9.7.4 Construction advice
	9.8 Underfooting reinforcement with geofibers
		9.8.1 Introduction
		9.8.2 Design procedure for strength increase
		9.8.3 Construction advice
	9.9 Soil separation
		9.9.1 Introduction
		9.9.2 Design procedures
		9.9.3 Construction advice
	9.10 Problems
	References
Chapter 10 Reinforcement in walls, embankments on stiff ground, and soil nailing
	10.1 Introduction
	10.2 Mechanically stabilized earth walls
		10.2.1 Introduction
		10.2.2 Design philosophy
		10.2.3 Advantages and disadvantages of MSE walls
		10.2.4 Design using geosynthetics
			10.2.4.1 Sliding of the reinforced mass
			10.2.4.2 Reinforcement breakage
			10.2.4.3 Reinforcement pullout
			10.2.4.4 Other failure modes
		10.2.5 Design of internal components
		10.2.6 External stability
		10.2.7 Typical factors of safety
		10.2.8 Inclusions in the backfill
		10.2.9 Drainage
		10.2.10 Other considerations
		10.2.11 Construction guidelines
	10.3 Mechanically stabilized earth walls using metal reinforcement
		10.3.1 Introduction
		10.3.2 Differences between metal and geosynthetic reinforcement
		10.3.3 Failure modes and typical factors of safety
		10.3.4 Inclusions in the backfill
		10.3.5 Construction guidelines
	10.4 Reinforced soil embankments on firm foundations using geosynthetic and metal reinforcement
		10.4.1 Introduction
		10.4.2 Philosophy of how reinforcement for steepened slopes works
		10.4.3 Engineering properties needed
		10.4.4 Design notes
		10.4.5 Construction procedure
		10.4.6 Inclusions in the backfill
		10.4.7 Internal stability: pullout and breakage, internal slope stability
		10.4.8 External stability: bearing capacity, sliding, and settlement
		10.4.9 Slope face stability: veneer instability, erosion control, and wrapped faces
		10.4.10 Drainage
	10.5 Soil nailing
		10.5.1 Introduction
		10.5.2 Applications
		10.5.3 Applicable sites
		10.5.4 Components of a soil nail system
		10.5.5 Methods of installing soil nails
		10.5.6 Design of soil nailed walls
			10.5.6.1 Failure modes
			10.5.6.2 Design calculations
		10.5.7 Construction of soil nailed walls
		10.5.8 Nail testing
		10.5.9 Corrosion protection
		10.5.10 Instrumentation
		10.5.11 Launched soil nails
	10.6 Problems
	References
Chapter 11 Additional techniques in ground improvement
	11.1 Jet grouting
		11.1.1 Introduction to jet grouting
		11.1.2 Environmental considerations
		11.1.3 Design considerations in jet grouting
	11.2 Ground freezing
		11.2.1 Introduction to ground freezing
		11.2.2 Fundamentals of ground freezing
		11.2.3 Properties of frozen ground
		11.2.4 Containment of contaminated soils
		11.2.5 Limitations of ground freezing
		11.2.6 Conclusions regarding ground freezing
	11.3 Secant pile walls
	11.4 Compaction grouting
		11.4.1 Introduction and history
		11.4.2 Uses
		11.4.3 Design
		11.4.4 Construction
	11.5 Explosives in ground improvement
		11.5.1 Introduction
		11.5.2 Applications of explosives
		11.5.3 Ground conditions favorable to explosives for compaction
		11.5.4 Construction practice for compaction by explosives
		11.5.5 Post explosion evaluations
		11.5.6 Collateral concerns with the use of explosives
		11.5.7 Case studies
	11.6 Problems
	References
Chapter 12 The future of ground improvement engineering
	12.1 Introduction
	12.2 Biogeotechnical methods for Ground improvement
		12.2.1 Biocementation
		12.2.2 Bioclogging to reduce hydraulic conductivity
		12.2.3 Bio-methods for liquefaction mitigation
	12.3 New materials for ground improvement
		12.3.1 MgO cement
		12.3.2 Polymers
		12.3.3 Smart and self-healing materials
	12.4 Technology developments in ground improvement: drones, sensors, and artificial intelligence
	12.5 Equipment developments
	12.6 Sustainability in ground improvement
		12.6.1 Introduction to sustainable ground improvement
		12.6.2 Sustainable materials
	12.7 Crossover information in ground improvement
	12.8 Summary of future developments in ground improvement
	12.9 Problems
	References
Index




نظرات کاربران