دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Jeffrey Evans, Daniel Ruffing, David Elton سری: ISBN (شابک) : 0415695120, 9780415695121 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 431 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 297 مگابایت
در صورت تبدیل فایل کتاب Fundamentals of Ground Improvement Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی مهندسی بهسازی زمین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بهسازی زمین یکی از پویاترین و سریعترین حوزه های مهندسی ژئوتکنیک و ساخت و ساز در 40 سال گذشته بوده است. نیاز به توسعه سایتهایی با خاکهای حاشیهای، بهسازی زمین را به یک جزء اصلی و مهم برنامههای درسی مهندسی ژئوتکنیک تبدیل کرده است. اصول مهندسی بهسازی زمین به موثرترین و جدیدترین تکنیک ها برای بهبود زمین می پردازد. روشهای کلیدی بهبود زمین معرفی شدهاند که درک کاملی از تئوری، اصول طراحی و رویکردهای ساختوساز که زیربنای هر روش هستند را در اختیار خوانندگان قرار میدهند. موضوعات اصلی تراکم، تزریق نفوذ، روش های ارتعاشی، اختلاط خاک، تثبیت و انجماد، دیوارهای برش، آبگیری، تحکیم، ژئوسنتتیک، تزریق جت، انجماد زمین، تزریق تراکم، و حفظ خاک است. این کتاب برای دانشجویان مقطع کارشناسی و کارشناسی ارشد و همچنین افرادی که به دنبال پیشینه اساسی در این تکنیک ها هستند ایده آل است. مشکلات متعدد، با مثال های کار شده، عکس ها، شماتیک ها، نمودارها و نمودارها آن را به یک مرجع و ابزار آموزشی عالی تبدیل کرده است.
Ground improvement has been one of the most dynamic and rapidly evolving areas of geotechnical engineering and construction over the past 40 years. The need to develop sites with marginal soils has made ground improvement an increasingly important core component of geotechnical engineering curricula. Fundamentals of Ground Improvement Engineering addresses the most effective and latest cutting-edge techniques for ground improvement. Key ground improvement methods are introduced that provide readers with a thorough understanding of the theory, design principles, and construction approaches that underpin each method. Major topics are compaction, permeation grouting, vibratory methods, soil mixing, stabilization and solidification, cutoff walls, dewatering, consolidation, geosynthetics, jet grouting, ground freezing, compaction grouting, and earth retention. The book is ideal for undergraduate and graduate-level university students, as well as practitioners seeking fundamental background in these techniques. The numerous problems, with worked examples, photographs, schematics, charts and graphs make it an excellent reference and teaching tool.
Cover Half Title Title Page Copyright Page Table of Contents Preface and Acknowledgments: Fundamentals of Ground Improvement Engineering Chapter 1 Introduction to ground improvement engineering 1.1 Introduction 1.2 Improvements in soil behavior 1.2.1 Shear strength 1.2.2 Compressibility 1.2.3 Hydraulic conductivity 1.2.4 Liquefaction potential 1.2.5 Shrink/swell behavior 1.2.6 Variability 1.3 Overview of ground improvement techniques 1.3.1 Compaction: shallow methods 1.3.2 Compaction: deep methods 1.3.3 Soil mixing and injection methods 1.3.4 Stabilization and solidification 1.3.5 Grouting 1.3.6 Dewatering 1.3.7 Consolidation 1.3.8 Mechanically stabilized earth 1.3.9 In situ barriers 1.3.10 Future developments in ground improvement 1.4 Importance of construction 1.5 Problems References Chapter 2 Geotechnical fundamentals 2.1 Definitions 2.1.1 Water content 2.1.2 Density, unit weight, density of solids, and specific gravity 2.2 Water flow in soil 2.2.1 Darcy’s law and one-dimensional flow 2.2.2 Flownets and two-dimensional flow 2.2.3 Quantity of water flowing through soil 2.2.4 Porewater pressure with water flowing through soil 2.2.5 Uplift pressures 2.2.6 Seepage force 2.2.7 Capillary rise of groundwater 2.3 Effective stress 2.3.1 Effective stress equation 2.3.2 Importance of effective stress 2.4 Shear strength 2.4.1 The concept of soil strength 2.4.2 Laboratory evaluation of shear strength 2.4.2.1 Direct shear testing 2.4.2.2 Triaxial testing 2.4.3 Shear strength summary 2.5 Lateral earth pressures 2.5.1 Active earth pressure 2.5.2 Passive earth pressure 2.5.3 At-rest (K0) earth pressure 2.5.4 Amount of movement to develop active, passive, and at-rest earth pressures 2.6 Field investigations 2.6.1 Drilling methods 2.6.2 Sampling methods 2.6.3 In situ test methods 2.6.3.1 SPT 2.6.3.2 CPT 2.7 Problems References Chapter 3 Fundamentals of geosynthetics in ground improvement 3.1 Introduction 3.1.1 Geotextiles 3.1.2 Geogrids 3.1.3 Geocells 3.1.4 Geofibers 3.1.5 Historical notes 3.2 Properties of geosynthetics 3.2.1 Tensile strengths 3.2.2 Permittivity (used in drainage) 3.2.3 Transmissivity (used in drainage) 3.2.4 Pore size determination (used in filtration) 3.2.5 Interface friction (used in mechanically stabilized earth and steepened slope design) 3.2.6 Survivability and durability 3.3 Geotextile filter design 3.3.1 Introduction 3.3.2 Design procedure 3.4 Summary 3.5 Problems References Chapter 4 Compaction 4.1 Introduction 4.2 Theoretical underpinnings of compaction 4.3 Property improvements resulting from compaction 4.3.1 Strength 4.3.2 Compressibility 4.3.3 Hydraulic conductivity (permeability) 4.3.4 Optimizing compacted soil properties 4.4 Shallow compaction 4.4.1 Field compaction equipment 4.4.2 Construction aspects of shallow compaction 4.5 Rapid impact compaction 4.5.1 Introduction 4.5.2 Applications 4.5.3 Construction vibrations 4.6 Deep dynamic compaction 4.6.1 Introduction 4.6.2 Design considerations for dynamic compaction 4.6.3 Verification of compaction effectiveness 4.6.4 Applications of deep dynamic compaction 4.6.5 Construction vibrations 4.7 Deep vibratory methods 4.7.1 Introduction to deep vibratory methods 4.7.2 Vibrocompaction 4.7.3 Vibroreplacement 4.8 Aggregate piers 4.9 Problems References Chapter 5 Consolidation 5.1 Introduction 5.2 Consolidation fundamentals 5.3 Stress distribution 5.4 Design approach 5.4.1 Time rate of consolidation 5.4.2 Preloading 5.5 Speeding consolidation with vertical drains 5.5.1 Introduction 5.5.2 Consolidation with vertical drains 5.6 Additional vertical drain considerations 5.6.1 Vertical drain types 5.6.2 Effect of PVD installation patterns 5.6.3 Effect of soil disturbance (smear) 5.7 Vacuum consolidation 5.8 Combined vacuum consolidation and preloading with vertical drains 5.9 Nature’s consolidation preloading 5.10 Summary 5.11 Problems References Chapter 6 Soil mixing 6.1 Introduction 6.2 History of soil mixing 6.3 Definitions, types, and classifications 6.3.1 Depth of soil mixing 6.3.2 Methods of mixing reagents 6.3.3 Equipment used for soil mixing 6.3.4 Treatment patterns 6.4 Applications 6.4.1 Shear walls 6.4.2 Aerial bearing capacity improvement 6.4.3 Hydraulic cutoff walls 6.4.4 Excavation support walls 6.4.5 Environmental soil mixing 6.4.6 Geoenvironmental soil mixing 6.5 Design considerations 6.5.1 Determine project needs 6.5.2 Select target design parameters 6.5.2.1 Strength 6.5.2.2 Hydraulic conductivity 6.5.2.3 Leachability 6.5.3 Reagent addition rates 6.5.4 Reagent (binder) types and selection 6.5.5 Develop and evaluate construction objectives 6.5.6 Construction 6.5.7 Sampling 6.5.8 In situ testing 6.6 Problems References Chapter 7 Grouting 7.1 Introduction 7.2 History of grouting 7.2.1 History of suspension grouting 7.2.2 History of solution grouting 7.3 Grouting types and classifications 7.3.1 Suspension grouts 7.3.2 Common grout mixtures for suspension grouting 7.3.3 Neat cement grout 7.3.4 Balanced stable grout 7.3.5 Microfine or ultrafine cement grouting 7.4 Solution grouts 7.4.1 Types of solution grouts 7.5 Permeation (penetration) grouting 7.6 Fracture grouting 7.7 Compensation grouting 7.8 Void grouting 7.9 Grout properties 7.9.1 Set (gel) time 7.9.2 Stability 7.9.3 Viscosity 7.9.4 Permanence 7.9.5 Toxicity 7.10 Applications 7.11 Design considerations 7.11.1 Understanding grout physics and preliminary planning 7.11.2 Geological conditions and site investigations 7.11.3 Interaction between grout and soil/rock 7.11.4 Grout mix design 7.12 Construction 7.12.1 Pre-grouting 7.12.2 Suspension and solution grouting 7.12.3 Drill rigs 7.12.4 Mixing (batch) plants 7.12.5 Pumping systems 7.12.6 Packers 7.13 Quality control 7.13.1 Flow measurements 7.13.2 Monitoring 7.13.3 Automated Monitoring Equipment 7.14 Void grouting, a special application 7.15 Problems References Chapter 8 Slurry trench cutoff walls 8.1 Introduction and overview 8.1.1 Functions of slurry trench cutoff walls 8.1.2 History of slurry trench cutoff walls 8.1.3 Slurry trench cutoff walls as a ground improvement technique 8.2 SB slurry trench Cutoff Walls 8.2.1 Excavation stability 8.2.2 Slurry property measurement 8.2.3 SB backfill design 8.2.4 Excavation techniques 8.3 CB slurry trench cutoff walls 8.3.1 CB mixtures and properties 8.3.2 Role of the bentonite in CB mixtures 8.3.3 Volume change behavior 8.4 Structural slurry walls (diaphragm walls) 8.5 Problems References Chapter 9 Ground improvement using geosynthetics 9.1 Introduction 9.2 Geosynthetic ground improvement 9.2.1 Introduction 9.2.2 Geosynthetic types used in ground improvement 9.2.3 Geosynthetic applications in ground improvement 9.3 Properties of geosynthetics 9.3.1 Introduction 9.3.2 Tensile strength 9.3.3 Interface friction 9.3.4 Durability 9.3.5 Geotextile survivability 9.4 Road base stabilization (Corps of Engineers methods) 9.4.1 Introduction 9.4.2 Unpaved road improvement using geosynthetics 9.4.3 Paved road improvement using geosynthetics 9.4.4 Geofibers in roads 9.5 Embankments over soft ground 9.5.1 Introduction 9.5.2 Conventional construction of embankments 9.5.3 Geosynthetic usage in embankment construction 9.5.4 Design procedure 9.5.4.1 Slope stability 9.5.4.2 Sliding of soil on top of geosynthetic 9.5.4.3 Geosynthetic rupture due to sliding 9.5.4.4 Pullout of the geosynthetic 9.5.4.5 Bearing capacity 9.5.4.6 Settlement 9.5.4.7 Additional checks 9.5.5 Instrumentation 9.5.6 Construction guidance 9.5.7 Alternative procedures 9.6 Underfooting reinforcement with rolled geosynthetics 9.6.1 Introduction 9.6.2 Design procedure 9.6.3 Construction 9.7 Underfooting reinforcement with geocells 9.7.1 Introduction 9.7.2 Ultimate load calculation 9.7.3 State of practice 9.7.4 Construction advice 9.8 Underfooting reinforcement with geofibers 9.8.1 Introduction 9.8.2 Design procedure for strength increase 9.8.3 Construction advice 9.9 Soil separation 9.9.1 Introduction 9.9.2 Design procedures 9.9.3 Construction advice 9.10 Problems References Chapter 10 Reinforcement in walls, embankments on stiff ground, and soil nailing 10.1 Introduction 10.2 Mechanically stabilized earth walls 10.2.1 Introduction 10.2.2 Design philosophy 10.2.3 Advantages and disadvantages of MSE walls 10.2.4 Design using geosynthetics 10.2.4.1 Sliding of the reinforced mass 10.2.4.2 Reinforcement breakage 10.2.4.3 Reinforcement pullout 10.2.4.4 Other failure modes 10.2.5 Design of internal components 10.2.6 External stability 10.2.7 Typical factors of safety 10.2.8 Inclusions in the backfill 10.2.9 Drainage 10.2.10 Other considerations 10.2.11 Construction guidelines 10.3 Mechanically stabilized earth walls using metal reinforcement 10.3.1 Introduction 10.3.2 Differences between metal and geosynthetic reinforcement 10.3.3 Failure modes and typical factors of safety 10.3.4 Inclusions in the backfill 10.3.5 Construction guidelines 10.4 Reinforced soil embankments on firm foundations using geosynthetic and metal reinforcement 10.4.1 Introduction 10.4.2 Philosophy of how reinforcement for steepened slopes works 10.4.3 Engineering properties needed 10.4.4 Design notes 10.4.5 Construction procedure 10.4.6 Inclusions in the backfill 10.4.7 Internal stability: pullout and breakage, internal slope stability 10.4.8 External stability: bearing capacity, sliding, and settlement 10.4.9 Slope face stability: veneer instability, erosion control, and wrapped faces 10.4.10 Drainage 10.5 Soil nailing 10.5.1 Introduction 10.5.2 Applications 10.5.3 Applicable sites 10.5.4 Components of a soil nail system 10.5.5 Methods of installing soil nails 10.5.6 Design of soil nailed walls 10.5.6.1 Failure modes 10.5.6.2 Design calculations 10.5.7 Construction of soil nailed walls 10.5.8 Nail testing 10.5.9 Corrosion protection 10.5.10 Instrumentation 10.5.11 Launched soil nails 10.6 Problems References Chapter 11 Additional techniques in ground improvement 11.1 Jet grouting 11.1.1 Introduction to jet grouting 11.1.2 Environmental considerations 11.1.3 Design considerations in jet grouting 11.2 Ground freezing 11.2.1 Introduction to ground freezing 11.2.2 Fundamentals of ground freezing 11.2.3 Properties of frozen ground 11.2.4 Containment of contaminated soils 11.2.5 Limitations of ground freezing 11.2.6 Conclusions regarding ground freezing 11.3 Secant pile walls 11.4 Compaction grouting 11.4.1 Introduction and history 11.4.2 Uses 11.4.3 Design 11.4.4 Construction 11.5 Explosives in ground improvement 11.5.1 Introduction 11.5.2 Applications of explosives 11.5.3 Ground conditions favorable to explosives for compaction 11.5.4 Construction practice for compaction by explosives 11.5.5 Post explosion evaluations 11.5.6 Collateral concerns with the use of explosives 11.5.7 Case studies 11.6 Problems References Chapter 12 The future of ground improvement engineering 12.1 Introduction 12.2 Biogeotechnical methods for Ground improvement 12.2.1 Biocementation 12.2.2 Bioclogging to reduce hydraulic conductivity 12.2.3 Bio-methods for liquefaction mitigation 12.3 New materials for ground improvement 12.3.1 MgO cement 12.3.2 Polymers 12.3.3 Smart and self-healing materials 12.4 Technology developments in ground improvement: drones, sensors, and artificial intelligence 12.5 Equipment developments 12.6 Sustainability in ground improvement 12.6.1 Introduction to sustainable ground improvement 12.6.2 Sustainable materials 12.7 Crossover information in ground improvement 12.8 Summary of future developments in ground improvement 12.9 Problems References Index