دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Patrick Chassaing
سری:
ISBN (شابک) : 3031100859, 9783031100857
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 578
[579]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Fundamentals of Fluid Mechanics: For Scientists and Engineers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی مکانیک سیالات: برای دانشمندان و مهندسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی یک نمای کلی منسجم و ساختار یافته از مکانیک
سیالات ارائه می دهد، رشته ای که با بسیاری از پدیده های طبیعی
مرتبط است و در قلب متنوع ترین کاربردهای صنعتی و فعالیت های
انسانی قرار دارد. تعادل بین تحلیل پدیدارشناختی، مفهومسازی
فیزیکی و فرمولبندی ریاضی هم بهعنوان یک نشانگر آموزشی واحد و
هم بهعنوان راهنمای روششناختی برای سه بخش کار عمل میکند.
معادلات حرکت حرارتی-مکانیکی یک سیال تک فازی همگن ایجاد میشود،
که از آن مدلهای جریان (سیال کامل، چسبناک) و کلاسهای حرکت
(همحجمی، باروتروپیک، غیر چرخشی و غیره) استخراج میشوند.
جریانهای تراکمناپذیر، بالقوه و جریانهای تراکمپذیر، هم در یک
تکامل همسانتروپیک و هم در شوک، یک سیال ناملرز ایدهآل در بخش
دوم مورد بررسی قرار میگیرند. سیال چسبناک موضوع مورد آخر است،
با رژیم حرکت خزنده و لایه مرزی آرام، دینامیکی و حرارتی. دیدگاه
های تاریخی هر زمان که درک مفاهیم مدرن را غنی کنند، گنجانده می
شوند. نمونههای زیادی که به دلیل ارتباط آموزشی آنها انتخاب
شدهاند، در تمرینها مورد بررسی قرار میگیرند.
این کتاب بهعنوان ابزار آموزشی برای دانشجویان مقطع لیسانس در
نظر گرفته شده است که میخواهند اولین مهارت مکانیک سیالات را کسب
کنند، و همچنین فارغالتحصیلان دورههای پیشرفته و مهندسین زمینه
های دیگر، مربوط به تکمیل چیزی است که گاهی اوقات مجموعه ای
پراکنده از دانش است.
This textbook provides a coherent and structured overview
of fluid mechanics, a discipline concerned with many natural
phenomena and at the very heart of the most diversified
industrial applications and human activities. The balance
between phenomenological analysis, physical conceptualization
and mathematical formulation serve both as a unifying
educational marker and as a methodological guide to the three
parts of the work. The thermo-mechanical motion equations of a
homogeneous single-phase fluid are established, from which flow
models (perfect fluid, viscous) and motion classes (isovolume,
barotropic, irrotational, etc.) are derived. Incompressible,
potential flows and compressible flows, both in an isentropic
evolution and shock, of an ideal inviscid fluid are addressed
in the second part. The viscous fluid is the subject of the
last one, with the creeping motion regime and the laminar,
dynamic and thermal boundary layer. Historical perspectives are
included whenever they enrich the understanding of modern
concepts. Many examples, chosen for their pedagogical
relevance, are dealt with in exercises.
The book is intended as a teaching tool for undergraduate
students, wishing to acquire a first command of fluid
mechanics, as well as graduates in advanced courses and
engineers in other fields, concerned with completing what is
sometimes a scattered body of knowledge.
Preface Acknowledgements About This Book Contents Part I Fluid Properties and Flow Models 1 Physical Concepts and Mathematical Tools 1.1 The Different Description Levels of a Fluid Motion 1.2 The Macroscopic Concept and Its Consequences 1.2.1 Validity of the Continuous Assumption 1.2.2 The Fluid Particle Concept 1.2.3 The Functions of the Flow's Macroscopic Description 1.3 The Physical Macroscopic Properties of a Fluid 1.3.1 The Notion of Fluid 1.3.2 Viscosity 1.3.3 Thermal Conductivity 1.3.4 Compressibility 1.3.5 Thermal Expansion and the Specific Heat Coefficients 1.4 The Mathematical Description of the Fluid Motion 1.4.1 Lagrangian Variables 1.4.2 Eulerian Variables 1.5 General Principles for the Study of a Fluid Motion 1.5.1 The Eulerian Viewpoint and the Control Volume 1.5.2 The Lagrangian Viewpoint and the Material Domain 1.6 The Material Derivation 1.6.1 Definition 1.6.2 The Material Derivative of a Scalar Function 1.6.3 The Material Derivative of a Vector Function 1.6.4 The Material Derivative of a Fluid Line Element 1.6.5 The Material Derivation of a Fluid Line Integral 1.6.6 The Material Derivative of the Circulation 1.6.7 The Material Derivative of a Volume Integral 1.6.8 The Material Derivative Related to Mass-Weighted Balances 1.6.9 The Transport Theorems of Reynolds-Rayleigh 1.6.10 The Case of a Stationary Motion 2 Flow Kinematics 2.1 Specific Lines and Surfaces of a Flow Field 2.1.1 The Streamline and Streamtube 2.1.2 The Pathline 2.1.3 The Streakline 2.1.4 The Fluid-line 2.2 Fluxes and Flow Rates 2.2.1 The General Flux Notion 2.2.2 Volume and Mass Flow Rates 2.2.3 The Volume Flow Rate and Stream Function 2.3 Small Displacement Kinematics 2.3.1 The Space Variation Analysis of a Vector Field 2.3.2 The Infinitesimal Motion Components of an Elementary Fluid Body 2.4 Vorticity and Vortex 2.4.1 The Vorticity Vector, the Vorticity Field 2.4.2 The Vorticity Line, Tube 2.4.3 The Vorticity Intensity. Circulation. Stokes' Theorem 2.4.4 The Vortex—Eddy 2.4.5 The Vortex Persistence 2.4.6 Helmholtz's Theorems 2.4.7 The Vortex Stretching 2.4.8 The Biot-Savart Law 2.5 The Application to Flow Visualization 2.5.1 General Information on Flow Visualization Techniques 2.5.2 Examples of Visualization by a Tracer 2.5.3 Examples of Visualization by Property 3 The Fundamental Balances of a Fluid Motion 3.1 Mass Conservation 3.1.1 The Global Formulation 3.1.2 The Local Expression 3.1.3 The Isovolume Condition and the Incompressible Fluid Assumption 3.2 The Motion Equations 3.2.1 The Momentum Equation in Integral Form 3.2.2 The Surface Force Analysis 3.3 The Energy Balance Equations 3.3.1 The Kinetic Energy Theorem 3.3.2 The First Law of Thermodynamics in a Fluid Motion 3.3.3 The Internal Energy Transport Equation 3.3.4 The Entropy Transport Equation 3.3.5 The Second Law of Thermodynamics in a Moving Fluid 3.4 The Eulerian Formulation of the Global Balance Equations 3.4.1 Mass Conservation Through a Stream Tube 3.4.2 The Global Momentum Balance: Euler's Theorem 3.4.3 The Kinetic Energy Balance and Head Loss 4 Fluid Motion Models 4.1 Chapter Objectives 4.2 The Current State in the Equation Formulation 4.3 The Newtonian Behaviour Schemes 4.3.1 The Dynamic Behaviour Scheme 4.3.2 The Thermal Behaviour Scheme 4.3.3 The Thermodynamic Equation of State 4.4 The Ideal Fluid Concept 4.4.1 The Intrinsic Irreversibilities in a Newtonian Fluid Motion 4.4.2 The Ideal Fluid Concept 4.5 The General Navier-Stokes Model 4.5.1 The Governing Equations 4.5.2 Initial and Boundary Conditions 4.6 The Simplified Models 4.6.1 The Concept of Restricted Models 4.6.2 The Real Compressible Fluid Flow Model 4.6.3 The Ideal Compressible Fluid Flow Model 4.6.4 The Real Incompressible Fluid Flow Model 4.6.5 The Ideal Incompressible Fluid Flow Model 4.7 The Characteristic Numbers of a Fluid Motion 4.7.1 The Dimensionless Formulation of the Local Equations 4.7.2 The Dimensionless Continuity Equation 4.7.3 The Dimensionless Momentum Equation 4.7.4 The Dimensionless Energy Equation 4.7.5 The Physical Interpretation of the Characteristic Numbers 4.7.6 Applications of the Dimensionless Analysis 4.7.7 The Vaschy-Buckingham or `π' Theorem 4.8 The Incompressible Flow Models According to the Reynolds Number 4.8.1 The Creeping Motion: Stokes' Model 4.8.2 The Infinite Reynolds Number Flow: Euler's Model 4.8.3 The Thin Shear Layer Laminar Flow: Prandtl's Model 5 Flow Classes 5.1 Introduction 5.2 The Irrotational Flow Class 5.2.1 Definition 5.2.2 The Velocity Potential 5.2.3 The Acceleration Potential 5.2.4 The Velocity Circulation Expression 5.2.5 The Barotropy Relation in an Ideal Fluid 5.3 The Isovolume Flow Class 5.3.1 Definition 5.3.2 The Velocity Vector Potential 5.3.3 The Two-Dimensional Case Restriction 5.4 The Stationary Flow Class 5.4.1 Definition 5.4.2 The Mass-Weighted Velocity Vector Potential 5.4.3 The Two-Dimensional Restriction 5.4.4 Flow Examples Defined by a Stream Function 5.5 The Irrotational and Isovolume Flow Class 5.5.1 Definition 5.5.2 The Kinematic Properties 5.5.3 The Dynamical Properties 5.5.4 The Energetic Properties 5.6 The Fundamental Local Theorems 5.6.1 Bernoulli's First Theorem for an Irrotational Flow 5.6.2 The Ideal Fluid Theorems 5.6.3 Summary 5.7 Examples of Local Theorem Application 5.7.1 Toricelli's Formula 5.7.2 Pitot and Prandtl Probes 5.7.3 Venturi's Flow Meter 5.7.4 The Isentropic Ejection Velocity of a Compressed Gas Part II Ideal Fluid Motions 6 Irrotational 2D-Plane Motions of an Incompressible Fluid 6.1 The General Assumptions and Their Consequences 6.1.1 The Complex Potential 6.1.2 The Initial Condition 6.1.3 The Boundary Conditions 6.2 Some Mathematical Aspects of the Potential Flow Theory 6.2.1 The Direct and Inverse Problem 6.2.2 The Materialization Principle 6.2.3 The Superposition Method 6.2.4 The Hydrodynamic Image Method 6.2.5 The Conformal Mapping 6.3 Examples of Complex Potentials 6.3.1 Elementary Flows 6.3.2 Superposition Flow Examples 6.3.3 The Method of Images 6.4 Efforts of a Potential Flow on an Immersed Solid 6.4.1 The General Action of a Moving Fluid on a Closed Contour 6.4.2 Application to a Closed Streamline: Blasius' Formulas 6.4.3 Kutta-Joukowsky's Theorem for the Circular Cylinder 6.4.4 The General Theorem for a Logarithmic Singularity 6.4.5 Physical Interpretations 6.5 The Theory of Sharp Trailing Edge Airfoils 6.5.1 The Airfoil Shape Design 6.5.2 The Kutta Condition 6.5.3 The Adapted Circulation Around an Airfoil 6.5.4 The Lift of an Infinite Span Airfoil 6.5.5 The Kutta-Joukowsky Theory Relevance 7 Sound Wave Propagation and the Shock Phenomenon 7.1 The Propagation of Small Pressure Disturbances 7.1.1 The Propagation Speed in a Still Environment 7.1.2 Energetic Considerations 7.1.3 The Propagation from a Moving Source 7.2 Finite Amplitude Waves, Shock 7.2.1 The Propagation of Successive Compression Waves 7.2.2 The Successive Expansion Wave Propagation 7.3 The Plane Shock Wave 7.3.1 The Study Assumptions 7.3.2 The Local Equations for a Normal Shock Crossing 7.3.3 Prandtl's Formula for the Normal Shock 7.3.4 The Mach Number Relation on Either Side of a Shock 7.3.5 Static Value Variations Through a Normal Shock 7.3.6 Hugoniot's Relation Through a Normal Shock 7.3.7 The Entropy Variation and Stagnation Conditions 7.3.8 The Normal Shock Wave Characteristics for the Air 7.4 Oblique Shock Waves 7.4.1 The Physical Evidence 7.4.2 The Local Equations 7.4.3 Prandtl's Formula for the Oblique Shock 7.4.4 The Relations on Either Side of the Shock 7.4.5 The Shock Angle as a Function of the Deflection and Upstream Mach Number 7.4.6 Mach Numbers on Either Side of the Shock 7.4.7 Summary 7.5 Practical Considerations 7.5.1 The Shock Formation in External Aerodynamics 7.5.2 Wave Reflection—Shock-Boundary Layer Interaction 8 One-Dimensional Steady Flows of an Ideal Compressible Gas 8.1 Ideal Gas Flows in Slowly Varying Cross-Section Ducts 8.1.1 The Situation Under Consideration 8.1.2 The Isentropic Motion Equations 8.2 Flow Variation Laws with the Cross-Section Area 8.2.1 The Logarithmic Differential Formulation 8.2.2 Discussion and Physical Interpretation 8.3 The Isentropic Flow Laws 8.3.1 The Stagnation Condition Concept 8.3.2 Expressions Based on Stagnation Conditions 8.3.3 Expressions Based on Critical Conditions 8.3.4 Physical Discussion 8.4 Examples of Ideal Compressible Fluid Flows 8.4.1 The De Laval Nozzle 8.4.2 The Compressible Flow in a Venturi Nozzle 8.4.3 Pitot Probing in the Supersonic Regime 8.5 Ideal Gas Flow with Friction and Heat Transfer in a Constant Cross-Section Duct 8.5.1 The Adiabatic Flow with Friction: Fanno's Flow 8.5.2 The Frictionless Duct Flow with Heat Transfer, Rayleigh's Flow Part III Real Fluid Motions 9 The Incompressible Navier-Stokes Model 9.1 Introduction 9.2 A Return to the Model Equations 9.2.1 The Velocity-Pressure Formulation 9.2.2 The Vorticity Equation 9.2.3 The Velocity-Potential Equation 9.2.4 The Two-Dimensional Plane Flow Case 9.2.5 Poisson's Equation for the Pressure 9.3 The Time-Based Analysis of the Momentum Balance 9.3.1 The Characteristic Time Scales of the Momentum Equation 9.3.2 Characteristic Numbers as Time Scale Ratios 9.3.3 The Advection/Diffusion Comparison: New Reynolds Number Interpretations 9.4 The Rotational Properties of a Fluid Motion 9.4.1 The Vortical Nature of the Flow on a Solid Body 9.4.2 The Elementary Mechanisms of the Vorticity Dynamics 9.4.3 The Vorticity-Velocity Interaction 9.5 Energy Properties 9.6 Flows as an ``Exact Solution'' of the Navier-Stokes Equations 9.6.1 The Plane Poiseuille Flow 9.6.2 Poiseuille's Flow in a Pipe 9.6.3 Couette's Axisymmetric Flow 9.6.4 The General Flow Between Two Parallel Plates 9.6.5 The Unsteady Flow on a Plane in Translation, Stokes' First Problem 9.7 Basic Flow Stability Concepts 9.7.1 Presenting the Problem 9.7.2 Some Examples of Flow Instabilities 9.8 Transition and Turbulence 9.8.1 The Flow Regime Transition and Turbulence 9.8.2 Some Specific Features of the Turbulent Regime 10 Very Low Reynolds Number Flows 10.1 Introduction 10.2 Stokes' Model 10.2.1 The Assumptions 10.2.2 The Velocity-Pressure Formulation of the Equations 10.2.3 The Pressure-Vorticity Equations 10.2.4 The Main Motion Properties 10.3 The Validity of Stokes' Model 10.4 Examples of Creeping Motions 10.4.1 The Flow in a Hele-Shaw Cell 10.4.2 Lubrication, Viscous Film Motion and Fluid Bearing 10.4.3 Stokes' Flow Past a Sphere 11 The Laminar Boundary Layer. Dynamic and Thermal Concepts 11.1 High Reynolds Number Flows of Real Fluids 11.1.1 The High Reynolds Number Flow Class 11.1.2 The Viscous Effect Localization in Incompressible High Reynolds Number Flows 11.1.3 The Advection-Diffusion Time-Equilibrium in an Isothermal Boundary Layer 11.1.4 The Convection-Diffusion Time-Equilibrium in the Thermal Boundary Layer 11.2 The Boundary Layer's Characteristic Parameters 11.2.1 Thicknesses 11.2.2 The Viscous Friction 11.2.3 The Heat Transfer 11.3 The Isovolume Boundary Layer Equations 11.3.1 The Specification of the Boundary Layer Configuration 11.3.2 The Dimensionless Form of the Local Equations 11.3.3 Discussion: Prandtl's Assumptions 11.3.4 Prandtl's Model 11.3.5 The Viscous–Inviscid Matching 11.3.6 The Boundary Layer Separation 11.4 Integral Equations 11.4.1 The Cross-Wise Velocity at the Boundary Layer's Free Edge 11.4.2 Von Kármán's Equation 11.4.3 The Global Mass Balance and Entrainment Velocity 11.4.4 The Global Momentum Balance 11.5 The Thermal Boundary Layer 11.5.1 The Outline of the Problem 11.5.2 Basic Assumptions for the Thermal Boundary Layer 11.5.3 The Thermal Boundary Layer Equations 11.5.4 Some Typical Thermal Boundary Layer Configurations 12 Boundary Layer Type Flows: Calculation Methods and Examples 12.1 The Analytical Calculation Methods for the Isovolume … 12.1.1 Solving the Local Equations 12.1.2 The Integral Method Based Calculation 12.2 Calculation Examples Related to the Isovolume Dynamic Boundary Layer 12.2.1 Flows as Exact Solutions of the Local Equations 12.2.2 Examples of Boundary Layer Calculations Using the Integral Method 12.3 The Thermal Boundary Layer on a Flat Plate 12.3.1 Free Convection on a Heated Vertical Flat Plate 12.3.2 Forced Convection in Low Speed Flows 12.3.3 Forced Convection in High Speed Isovolume Flows 12.3.4 Some Basics on the Compressible Boundary Layer at Pr = 1 12.4 The Two-Dimensional Thin Shear Layers and Free Shear Flows 12.4.1 The Thin Shear Layer Approximation in Free Flows 12.4.2 The Plane Free Jet 12.4.3 The Plane Wake Appendix A Thermodynamics A.1 General Background A.2 The State Variables and Functions A.3 The Equation of State A.4 The Pressure, Temperature and Characteristic Coefficients A.5 The First Law A.6 The Second Law A.7 The Irreversibility Sources A.7.1 The Extrinsic Irreversibility A.7.2 The Intrinsic Irreversibility A.8 The Differential Relation to the Internal Energy and Entropy Specific Values A.9 The Ideal Gas Assumption A.10 The Incompressibility Assumption Appendix B The Tenso-Vectorial Notations and Operators B.1 General Conventions B.2 Some Usual Symbols B.3 The Main Operators B.4 Some Expressions of Tenso-Vectorial Operators in Index Notation Appendix C Vector Calculus Identities Appendix D Vector Operator Expressions in Projection D.1 Definitions and Notations D.2 The Expression of the Various Operators D.2.1 The Divergence of a Vector D.2.2 The Laplacian of a Scalar Field D.2.3 The Gradient of a Scalar Function D.2.4 The Curl of a Vector Field D.2.5 The Divergence of a Symmetrical Second-Order Tensor D.2.6 The Gradient of Vector Field D.2.7 The Material Derivative of a Scalar Function Appendix E The Projections of the Navier-Stokes Equations in Various Coordinate Systems E.1 The Cartesian Coordinates E.2 The Cylindrical Coordinates E.3 The Spherical Coordinates Appendix List of Exercises Appendix References Index