دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Heather A. E. Benson, Michael S. Roberts, Adrian C. Williams, Xiaowen Liang سری: ISBN (شابک) : 2021033395, 9781119769651 ناشر: Wiley سال نشر: 2021 تعداد صفحات: 592 [579] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Fundamentals of Drug Delivery به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی تحویل دارو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راهنمای جامع برای تحقیقات فعلی، چالشهای اصلی و چشماندازهای آینده سیستمهای تحویل کنترلشده دارو تحویل کنترل شده دارو پتانسیل بهبود قابل توجه نتایج درمانی، افزایش مزایای بالینی و افزایش ایمنی داروها در طیف گسترده ای از بیماری ها و شرایط بهداشتی را دارد. اصول تحویل دارو پوشش جامع و به روزی از اصول و فرآیندهای اساسی سیستم های تحویل داروی کنترل شده مدرن ارائه می دهد. این جلد ویرایش شده با مشارکت محققان محترم، پزشکان و متخصصان صنعت داروسازی، آخرین تحقیقات در این زمینه را بررسی میکند و به بسیاری از مسائل اساسی در توسعه دارورسانی مؤثر و کنترلشده میپردازد. این کتاب که در سه بخش تقسیم شده است، با معرفی مفهوم تحویل دارو و بحث در مورد چالش ها و فرصت ها در زمینه به سرعت در حال تحول آغاز می شود. بخش دوم نقدی عمیق از راههای تجویز رایج برای تحویل کنترلشده دارو، از جمله تحویل از طریق پوست، ریهها، و از طریق راههای چشمی، بینی و گوش ارائه میکند. بخش پایانی وضعیت فعلی این حوزه را خلاصه میکند و مسائل خاص در تحویل دارو و فنآوریهای تحویل پیشرفته، مانند استفاده از فناوری نانو در دارورسانی پوستی و سیستمهای تحویل داروی پیشرفته برای مواد بیولوژیک را بررسی میکند. این منبع معتبر: هر مرحله اصلی از فرآیند تولید دارو، از جمله انتخاب نامزدهای دارویی و ارزیابی ویژگیهای فیزیکوشیمیایی آنها را پوشش میدهد. نقش و کاربرد مدلسازی ریاضی و تأثیر ناقلهای دارو در فارماکوکینتیک و وضعیت دارو را شرح میدهد. جزئیات فیزیولوژی و موانع تحویل دارو برای هر مسیر تجویز یک چشم انداز تاریخی و نگاهی به آینده احتمالی سیستم های پیشرفته تحویل دارو ارائه می دهد نانوتکنولوژی و دارورسانی با واسطه سلولی، از جمله برنامههای کاربردی برای تحویل هدفمند و مسایل سمشناسی و ایمنی را بررسی میکند. شامل ارجاعات جامع و پیوندهایی به ادبیات اولیه است کتاب اصول تحویل دارو که توسط تیمی از متخصصان شناخته شده بین المللی ویرایش شده است، خواندنی ضروری برای محققان، دانشمندان صنعتی و دانشجویان پیشرفته در تمام زمینه های دارورسانی از جمله داروسازی، علوم دارویی، مهندسی زیست پزشکی، علوم پلیمر و مواد، و شیمی و مواد است. مهندسی بیوشیمی
A comprehensive guide to the current research, major challenges, and future prospects of controlled drug delivery systems Controlled drug delivery has the potential to significantly improve therapeutic outcomes, increase clinical benefits, and enhance the safety of drugs in a wide range of diseases and health conditions. Fundamentals of Drug Delivery provides comprehensive and up-to-date coverage of the essential principles and processes of modern controlled drug delivery systems. Featuring contributions by respected researchers, clinicians, and pharmaceutical industry professionals, this edited volume reviews the latest research in the field and addresses the many issues central to the development of effective, controlled drug delivery. Divided in three parts, the book begins by introducing the concept of drug delivery and discussing both challenges and opportunities within the rapidly evolving field. The second section presents an in-depth critique of the common administration routes for controlled drug delivery, including delivery through skin, the lungs, and via ocular, nasal, and otic routes. The concluding section summarizes the current state of the field and examines specific issues in drug delivery and advanced delivery technologies, such as the use of nanotechnology in dermal drug delivery and advanced drug delivery systems for biologics. This authoritative resource: Covers each main stage of the drug development process, including selecting pharmaceutical candidates and evaluating their physicochemical characteristics Describes the role and application of mathematical modelling and the influence of drug transporters in pharmacokinetics and drug disposition Details the physiology and barriers to drug delivery for each administration route Presents a historical perspective and a look into the possible future of advanced drug delivery systems Explores nanotechnology and cell-mediated drug delivery, including applications for targeted delivery and toxicological and safety issues Includes comprehensive references and links to the primary literature Edited by a team of of internationally-recognized experts, Fundamentals of Drug Delivery is essential reading for researchers, industrial scientists, and advanced students in all areas of drug delivery including pharmaceutics, pharmaceutical sciences, biomedical engineering, polymer and materials science, and chemical and biochemical engineering.
Cover Title Page Copyright Contents Preface List of Contributors Part I Product Design, the Essence of Effective Therapeutics Chapter 1 Challenges and Innovations of Controlled Drug Delivery 1.1 Background 1.2 Parenteral Dosage Forms 1.2.1 Intravenous Route (IV) 1.2.2 Intramuscular Route (IM) 1.2.3 Subcutaneous Route (SC) 1.2.4 Other Parenteral Routes 1.3 Oral Route and Delivery Systems 1.4 Nasal Drug Delivery 1.5 Pulmonary Drug Delivery 1.6 Transdermal Drug Delivery 1.7 Ocular Drug Delivery 1.8 Drug Delivery System Development Process 1.9 Conclusion References Chapter 2 Challenges in Design of Drug Delivery Systems 2.1 Drug Properties to be Considered in Design of Controlled Release Products 2.2 Physicochemical Factors that Need to be Considered in Design of CRDDS 2.2.1 Dose Size 2.2.2 Molecular Weight/Size 2.2.3 Aqueous Solubility 2.2.4 Lipid Solubility and Partition Coefficient 2.2.5 Physicochemical Stability 2.3 Biopharmaceutical Properties that Deserve Consideration in Design of Controlled Release Products 2.3.1 Biological Half‐life 2.3.2 Absorption 2.3.3 Metabolism 2.3.4 Presystemic Clearance 2.3.5 Margin of Safety 2.3.6 Adverse Effects 2.3.7 Therapeutic Need 2.3.8 Role of Circadian Rhythm 2.4 Conclusion References Chapter 3 Drug Delivery of the Future (?) 3.1 Introduction 3.2 Therapeutic Indicators 3.3 Drugs of the Future 3.4 Delivering the Drugs of the Future 3.5 A View to the Longer Term? 3.6 Conclusion References Chapter 4 The Pharmaceutical Drug Development Process: Selecting a Suitable Drug Candidate 4.1 The Oral Drug Candidate: How to Get There and Questions to Answer 4.2 Challenges for Selecting a Topical Drug Candidate 4.3 Percutaneous Flux as a Surrogate Measurement of Skin Tissue Concentration 4.4 Learnings from Past Topical Drug Development of Factors Affecting Efficacy 4.5 Dermal Pharmacokinetics/Pharmacodynamics 4.6 Assessment of Systemic Exposure 4.7 Screening Cascade Approach to Select a Dermal Drug Candidate 4.7.1 Efficacy (Lack of Target Engagement) 4.7.2 Developability 4.7.3 Local Safety 4.7.4 Systemic Safety 4.8 Opportunities for Repurposing Molecules into Dermally Active Treatments for Cosmeceutical or Pharmaceutical Approaches 4.9 Conclusion References Chapter 5 Preformulation and Physicochemical Characterization Underpinning the Development of Controlled Drug Delivery Systems 5.1 When Is a Controlled Drug Delivery System Needed? 5.2 Optimizing Drug Characteristics 5.3 Defining the Product Profile 5.4 Preformulation and Physicochemical Characterization Underpinning Development of CDD 5.4.1 Feasibility and Risk Assessment 5.4.2 Solubility and Dissolution Rate 5.4.3 Permeability 5.4.4 Drug and Drug Product Particle Sizes 5.4.5 Solid‐State Chemistry 5.4.5.1 Crystallinity and Polymorphism 5.4.5.2 Salts 5.4.6 Stability 5.4.7 Excipient Compatibility 5.4.8 Bulk Powder Properties 5.4.9 Drug Metabolism and Pharmacokinetic Modeling 5.4.9.1 Guiding the Design of CDD Dosage Forms 5.4.9.2 Establishing In Vitro–In Vivo Correlation (IVIVC) 5.4.9.3 Physiologically Based Pharmacokinetic (PBPK) Modeling Tools 5.5 Conclusion References Chapter 6 Mathematical Models Describing Kinetics Associated with Controlled Drug Delivery Across Membranes 6.1 Introduction 6.1.1 General Description 6.1.2 Governing Equations 6.1.2.1 Differential Equations 6.1.2.2 Dimensionless Differential Equations 6.1.2.3 Initial and Boundary Conditions 6.1.3 Other Derived Quantities 6.1.4 Dimensionless Variables and Groups 6.2 Model Solutions 6.2.1 Type A Models – Well‐Stirred Vehicle on One Membrane 6.2.1.1 Model A1 6.2.1.2 Model A2 6.2.1.3 Model A3 6.2.1.4 Model A4 6.2.1.5 Model A5 6.2.1.6 Model A6 6.2.1.7 Model A7 6.2.1.8 Model A8 6.2.1.9 Model A9 6.2.1.10 Model A9a 6.2.1.11 Model A9b 6.2.1.12 Model A10 6.2.1.13 Model A11 6.2.1.14 Model A12 6.2.1.15 Model A13 6.2.2 Type B Models – Unstirred Semi‐infinite Vehicle on One Membrane 6.2.2.1 Model B1 6.2.2.2 Model B2 6.2.3 Type C – Well Stirred Vehicle on Two Membranes in Series 6.2.3.1 Model C1 6.3 Solution Methods 6.3.1 Separation of Variables Solutions 6.3.1.1 Separating the Partial Differential Equation of N Independent Variables into N Ordinary Differential Equations 6.3.1.2 Choosing the Sign (Positive or Negative) on the Separation Constant 6.3.1.3 Finding the Constants of Integration and the Eigenvalues 6.3.1.4 Superposition 6.3.1.5 Finding the Remaining Constants of Integration 6.3.1.6 Guidelines for Using Separation of Variable Methods to Solve Partial Differential Equations 6.3.1.7 Methods for Making a Nonhomogeneous Partial Differential Equation or Nonhomogeneous Boundary Conditions Homogeneous 6.3.1.8 Choosing the Index Starting Value on the Sum of All Solutions (i.e. should n = 1 or 0?) 6.3.2 Laplace Transform Solutions 6.3.2.1 Using Laplace Transforms to Determine Lag Times, Steady‐state Values and Other Derived Quantities 6.3.2.2 Inversion of Laplace Transformed Functions to Time Domain Functions by Method of Residues 6.3.2.3 Example A – Model A1 6.3.2.4 Example B – Model A10 6.3.3 Useful Identities References Chapter 7 Understanding Drug Delivery Outcomes: Progress in Microscopic Modeling of Skin Barrier Property, Permeation Pathway, Dermatopharmacokinetics, and Bioavailability 7.1 Introduction 7.2 Governing Equation 7.2.1 Homogenized Model 7.2.2 Microscopic Model 7.2.2.1 Solute Diffusion in SC Lipid 7.2.2.2 Solute Diffusion in SC Corneocytes 7.2.2.3 Solute Diffusion in Appendages 7.2.3 Numerical Methods 7.3 Input Parameters 7.3.1 SC Microstructure 7.3.2 SC Lipid–Water Partition 7.3.3 Diffusivity in SC Lipids 7.3.4 Binding to Keratin 7.3.5 Diffusivity in Corneocytes 7.3.6 Solute Diffusivity and Partition in Sebum 7.4 Application 7.4.1 Steady‐State 7.4.2 Dermatopharmacokinetics 7.4.3 Systemic Pharmacokinetics 7.4.4 Shunt Pathway 7.5 Perspective References Chapter 8 Role of Membrane Transporters in Drug Disposition 8.1 Introduction 8.2 Distribution of Major Drug Transporters in Human Tissues 8.2.1 Major Drug Transporters in the Intestine 8.2.1.1 Drug Transporters Expressed in the Apical (Luminal) Membrane 8.2.1.2 Drug Transporters Expressed in the Basolateral Membrane 8.2.1.3 Expression of Drug Transporters in Different Intestinal Regions 8.2.2 Major Drug Transporters in the Liver 8.2.2.1 Drug Transporters Expressed in the Apical Membrane of Hepatocytes 8.2.2.2 Drug Transporters Expressed in the Basolateral (Sinusoidal) Membrane of Hepatocytes 8.2.2.3 Drug Transporters Expressed in the Bile Duct Epithelia (Cholangiocytes) 8.2.3 Major Drug Transporters in the Kidney 8.2.3.1 Drug Transporters Expressed in the Apical Membrane of Proximal Tubule Cells 8.2.3.2 Drug Transporters Expressed in the Basolateral Membrane of Proximal Tubule Cells 8.2.4 Major Drug Transporters in the Central Nervous System (CNS) 8.2.4.1 Drug Transporters Expressed in the Capillary Endothelial Cells of BBB 8.2.4.2 Drug Transporters Expressed in the Choroid Plexus Epithelial Cells of BCSFB 8.2.5 Major Drug Transporters in Other Tissues 8.2.5.1 Drug Transporters Expressed in Placenta Villi Epithelial Cells (Syncytiotrophoblasts) 8.2.5.2 Drug Transporters Expressed in Mammary Glands 8.2.5.3 Drug Transporters Expressed in the Blood–Testis‐Barrier (BTB) 8.3 Role of Drug Transporters in Drug Disposition 8.3.1 Role of P‐gp in Drug Disposition 8.3.2 Role of BCRP in Drug Disposition 8.3.3 Role of BSEP in Drug‐Induced Cholestatic Liver Injury 8.3.4 Role of MRPs (MRP2, MRP3, and MRP4) in Drug Disposition 8.3.5 Role of OATPs (OATP1B1, OATP1B3, and OATP2B1) in Drug Disposition 8.3.6 Role of OATs (OAT1 and OAT3) in Drug Disposition 8.3.7 Role of OCTs (OCT1 and OCT2)/MATEs (MATE1 and MATE2‐K) in Drug Disposition 8.4 Closing Remarks References Part II Challenges in Controlled Drug Delivery and Advanced Delivery Technologies Chapter 9 Advanced Drug Delivery Systems for Biologics 9.1 Introduction 9.2 Considerations in Biologics Product Development 9.2.1 Challenges Specific to the Route of Administration 9.2.2 Challenges Related to Parenteral Administration 9.2.3 Optimization of Dosage Regimens 9.3 Administration Routes for Biologics Delivery 9.3.1 Parenteral Route 9.3.2 Oral Route 9.3.3 Buccal Route 9.3.4 Sublingual Route 9.3.5 Pulmonary Route 9.3.5.1 Additional Concerns in Pulmonary Delivery 9.3.6 Intranasal Route 9.3.7 Trans(dermal) Delivery 9.3.7.1 Gene Delivery 9.3.7.2 Vaccine Delivery 9.3.7.3 Protein Delivery 9.3.8 Dermal Delivery of Growth Hormones 9.3.9 Vaginal Route 9.4 Conclusion References Chapter 10 Recent Advances in Cell‐Mediated Drug Delivery Systems for Nanomedicine and Imaging 10.1 Introduction 10.2 Cell Types and Modification for Therapeutic Agent Delivery 10.2.1 Cell Types 10.2.1.1 Blood Cells 10.2.1.2 Stem Cells 10.2.1.3 Antigen Presenting Cells (APCs) 10.2.1.4 Cell Membranes 10.2.2 Cargo Loading Methods 10.3 Imaging and Tracking of Cell‐Based Delivery Systems 10.3.1 MRI 10.3.2 PET 10.3.3 X‐Ray Imaging 10.3.4 Multimodal Imaging Techniques 10.4 Cell‐Mediated Drug Delivery Systems for Disease Treatment 10.4.1 Cancer Therapy 10.4.2 Immunotherapy 10.4.3 Brain‐Related Diseases 10.4.4 Inflammatory Diseases 10.4.5 Theranostic Application 10.4.6 Others 10.5 The Mechanism of Cell‐Mediated Delivery Systems for the Cell Therapies 10.5.1 Detoxification 10.5.2 Adhesive Mechanism 10.5.3 Homing Mechanism 10.6 The Administration Approach of Cell‐Assist Drug Delivery System 10.7 Clinical Application of Cell‐Based Delivery Systems 10.8 Conclusion and Outlook References Chapter 11 Overcoming the Translational Gap – Nanotechnology in Dermal Drug Delivery 11.1 Nanotechnology – Failure or Future in Drug Delivery? 11.2 Identification of the Clinical Need 11.3 Nanoparticle Design and Physicochemical Characterization 11.4 Biomedical Studies 11.4.1 Atopic Dermatitis 11.4.2 Psoriasis 11.4.3 Ichthyosis 11.4.4 Wound Healing 11.4.5 Infections 11.4.6 Skin Cancer 11.4.7 Alopecia Areata 11.5 Approaches to Fill the Translational Gaps in Nanotechnology References Chapter 12 Theranostic Nanoparticles for Imaging and Targeted Drug Delivery to the Liver 12.1 Introduction 12.2 The Types of Theranostic NPs 12.2.1 Lipid‐ and Polymer‐Based NPs 12.2.2 Mesoporous Silica NPs 12.2.3 Bio‐nanocapsules 12.2.4 Iron Oxide NPs 12.3 Mechanisms of NPs Targeting the Liver 12.3.1 Passive Targeting to the Liver 12.3.2 Active Targeting to the Liver 12.3.3 Strategies for Combining Passive and Active Targeting 12.4 NPs in Liver Target Imaging 12.4.1 NP‐Based Contrast Agents in Liver MRI 12.4.2 NP‐Based Contrast Agents in Liver CT Imaging 12.4.3 NPs for Near‐Infrared Fluorescence Imaging in Liver 12.5 NPs for Therapeutic and Drug Delivery in Liver Disease 12.5.1 NP Delivery System in HCC 12.5.2 NP Delivery System in Non‐tumoral Liver Disease 12.6 Theranostic NPs in Liver Diseases 12.7 Conclusions References Chapter 13 Toxicology and Safety of Nanoparticles in Drug Delivery System 13.1 Introduction 13.2 Lipid‐Based Nanocarrier: Liposomes 13.3 Cellular Uptake Mechanism of Liposomes 13.4 Biodistribution, Clearance and Toxicity of Liposomes 13.4.1 Effect of Lipid Compositions on Liposome Distribution and Blood Circulation 13.4.2 Effect of Surface Charge on Liposome Distribution and Blood Circulation 13.4.3 Effect of Size on Liposome Distribution and Blood Circulation 13.5 Application of Liposomes in Drug Delivery 13.6 Inorganic Nanocarrier: Carbon Nanotubes 13.7 Cellular Uptake Mechanism of Carbon Nanotubes 13.8 Biodistribution, Clearance, and Toxicity of Carbon Nanotubes 13.9 Application of Carbon Nanotubes in Drug Delivery 13.10 Conclusion References Part III Administrative Routes for Controlled Drug Delivery Chapter 14 Controlled Drug Delivery via the Ocular Route 14.1 Introduction 14.2 Physiology of the Eye 14.2.1 Ocular Membranes; Conjunctiva, Cornea, and Sclera 14.2.2 Internal Ocular Structures 14.2.3 Anterior Chamber, Lens, and Vitreous Body 14.3 Ocular Disorders 14.3.1 Periocular Disorders 14.3.2 Intraocular Disorders 14.4 Controlled Drug Delivery Systems 14.4.1 Formulation Strategies 14.4.2 Mucoadhesive Systems 14.4.3 Solution to Gel In Situ Gelling Systems 14.4.4 Penetration Enhancers 14.4.5 Contact Lenses and Ocular Inserts 14.4.6 Intraocular Systems (Implants, Injectables, and Degradable Microparticles) 14.4.7 Phonophoresis and Ionophoresis 14.4.8 Topical Prodrugs 14.4.9 Microneedle Systems 14.5 Conclusions References Chapter 15 Controlled Drug Delivery via the Otic Route 15.1 Introduction 15.2 Anatomy and Physiology of the Otic Route 15.2.1 Anatomy of the Otic Route 15.2.2 Barriers Relevant to Inner Ear Drug Delivery 15.2.2.1 Blood Labyrinth Barrier 15.2.2.2 Round Window Membrane 15.2.2.3 Oval Window 15.2.2.4 Eustachian Tube 15.2.2.5 Tympanic Membrane 15.3 Controlled Drug Delivery Systems 15.3.1 Intratympanic Administration 15.3.1.1 Silverstein MicroWick 15.3.1.2 Round Window Microcatheter (μCath) 15.3.1.3 Gelfoam 15.3.1.4 Seprapack 15.3.1.5 Ozurdex as a RWM Implant 15.3.1.6 Propel Steroid‐Eluting Stent 15.3.2 Trans‐Oval Window Administration 15.3.3 Intracochlear Administration 15.3.3.1 Drug‐Eluting Cochlear Implants 15.3.3.2 Microfluidic Reciprocating Reservoir 15.4 Conclusions References Chapter 16 Controlled Drug Delivery via the Nasal Route 16.1 Introduction 16.2 Anatomy and Physiology of the Nose 16.3 Absorption from the Nasal Cavity 16.3.1 The Epithelial Barrier 16.3.2 Absorption 16.4 Mucus and Mucociliary Clearance 16.5 Drug Delivery Systems 16.5.1 Solutions and Suspensions 16.5.2 Mucoadhesive Polymers 16.5.2.1 In Situ Forming Nasal Gels 16.5.2.2 Nasal Inserts 16.5.2.3 Microspheres and Nanospheres 16.5.2.4 Liposomes 16.5.2.5 Microemulsions and Nanoemulsions 16.5.2.6 Combination/Hybrid Products and Others 16.5.3 The Nasal Route and the Blood–Brain Barrier 16.5.4 The Nasal Route for Vaccinations 16.5.5 In Vitro/in Vivo Models for Nasal Absorption 16.6 Conclusion References Chapter 17 Controlled Drug Delivery via the Buccal and Sublingual Routes 17.1 Introduction 17.2 Buccal and Sublingual Physiology and Barriers to Drug Delivery 17.2.1 Saliva and Mucus 17.2.2 Buccal and Sublingual Epithelium and Permeation Barrier 17.3 Controlled Drug Delivery Systems 17.3.1 Tablets 17.3.2 Films 17.3.3 Gels, Ointments, and Liquid Formulations 17.3.4 Spray 17.3.5 Wafers 17.3.6 Lozenges 17.3.7 Advanced and Novel Drug Delivery Systems 17.4 Functional Excipients Used in Controlled Release Systems to Enhance Buccal and Sublingual Drug Bioavailability 17.4.1 Permeation Enhancers 17.4.2 Mucoadhesive Polymers 17.5 Conclusions Acknowledgments References Chapter 18 Controlled Drug Delivery via the Lung 18.1 Introduction 18.2 The Relevant Physiology of the Route Including the Barriers to Drug Delivery 18.3 Controlled Drug Delivery Systems 18.3.1 Formulations 18.3.1.1 Dissolution Rate Controlled 18.3.1.2 Sustained Release Systems 18.3.1.3 Drug Complexes 18.3.1.4 Drug–Receptor Binding 18.3.1.5 Drug Conjugates 18.3.1.6 Drug–Polymer Matrix Particles 18.3.1.7 Large Porous Particles 18.3.1.8 Nanosystems 18.3.2 Devices 18.3.2.1 Controlling Lung Deposition Patterns 18.3.2.2 Nebulizers 18.3.2.3 Dry Powder Inhalers 18.3.2.4 Pressurized Metered‐Dose Inhalers 18.4 Conclusions Acknowledgments References Chapter 19 Controlled Drug Delivery via the Vaginal and Rectal Routes 19.1 Introduction 19.2 Biological Features of the Vagina and Colorectum 19.2.1 Vagina 19.2.2 Colorectum 19.3 Controlled Drug Delivery Systems 19.3.1 Vaginal Route 19.3.1.1 Conventional Dosage Forms 19.3.1.2 Removable Drug Delivery Systems 19.3.1.3 Nanotechnology‐based Drug Delivery Systems 19.3.2 Rectal Route 19.3.2.1 Dosage Forms 19.3.2.2 Nanotechnology‐based Drug Delivery Systems 19.4 Conclusions Acknowledgments References Chapter 20 Controlled Drug Delivery into and Through Skin 20.1 Introduction 20.1.1 Human Skin Structure and Function 20.1.1.1 Biological Factors 20.1.1.2 Skin as a Physical Barrier 20.1.2 Drug Transport Through Skin 20.2 Controlled Drug Delivery into and Through Skin 20.2.1 Skin Barrier Modulation 20.2.1.1 Penetration Enhancers 20.2.1.2 Ablation 20.2.2 Controlled Release Transdermal and Topical Systems 20.2.2.1 Supersaturation 20.2.2.2 Reservoir Formation 20.2.2.3 Film Forming Systems 20.2.2.4 Vesicles 20.2.2.5 Particles 20.2.3 Device‐Based Controlled Delivery 20.2.3.1 Iontophoresis 20.2.3.2 Sonophoresis 20.2.3.3 Electroporation 20.2.3.4 Microneedles 20.2.3.5 Heat 20.2.3.6 Other Devices 20.3 Combination Approaches 20.4 Conclusions References Index EULA