دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Carmelo Giacovazzo, H. L. Monaco, D. Viterbo, F. Scordari, G. Gilli, G. Zanotti, M. Catti سری: ISBN (شابک) : 0198555784, 9780198555780 ناشر: Oxford University Press, USA سال نشر: 1992 تعداد صفحات: 669 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 29 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Fundamentals of Crystallography (International Union of Crystallography Book Series, No. 2) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی کریستالوگرافی (اتحادیه بین المللی کتاب کریستالوگرافی سری ، شماره 2) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در سالهای اخیر، تکنیکهای کریستالوگرافی در طیف وسیعی از موضوعات کاربرد پیدا کردهاند و این کاربردها به نوبه خود منجر به پیشرفتهای هیجانانگیزی در خود حوزه کریستالوگرافی شدهاند. این کتاب درسی جدید مقدمهای بر این پیشرفتها ارائه میکند و برای اولین بار، در یک جلد، مروری جامع و در دسترس از بلورشناسی مدرن ارائه میکند. این متن درمان دقیقی از نظریه ارائه می دهد و کاربردهای تجربی را در بسیاری از زمینه ها توصیف می کند. اینها در فصل هایی در مورد ساختار بلوری و روش های تعیین آن، تقارن، محاسبات کریستالوگرافی، پراش اشعه ایکس، کریستالوگرافی پروتئین و فیزیک کریستال پوشش داده شده است.
In recent years, crystallographic techniques have found application in a wide range of subjects, and these applications in turn have lead to exciting developments in the field of crystallography itself. This new textbook offers an introduction to these developments, and for the first time provides, in a single volume, a comprehensive and accessible overview of modern crystallography. The text offers a rigorous treatment of theory and describes experimental applications in many fields. These are covered in chapters on crystal structure and methods of its determination, symmetry, crystallographic computing, X-ray diffraction, protein crystallography, and crystal physics.
Cover......Page 1
Title......Page 2
Copyright......Page 3
Preface......Page 4
Acknowledgements......Page 5
Contents......Page 6
Epigraph......Page 12
Contributors......Page 14
The crystalline state and isometric operations......Page 16
Axes of rotational symmetry......Page 18
Axes of rotoreflection......Page 20
Lattices......Page 21
Crystallographic directions......Page 22
Crystallographic planes......Page 23
Symmetry restrictions due to the lattice periodicity and vice versa......Page 24
Point groups and symmetry classes......Page 26
Point groups in one and two dimensions......Page 31
The seven crystal systems......Page 32
Plane lattices......Page 33
Space lattices......Page 34
Cubic lattices......Page 35
Trigonal lattices......Page 36
The space groups......Page 37
The plane and line groups......Page 45
On the matrix representation of symmetry operators......Page 47
1.A The isometric transformations......Page 50
Direct movements......Page 51
1.B Some combinations of movements......Page 52
1.C Wigner-Seitz cells......Page 56
1.D The space-group matrices......Page 58
1.E Symmetry groups......Page 60
Subgroups......Page 62
Conjugate classes......Page 63
Normal subgroups and factor groups......Page 64
Maximal subgroups and minimal supergroups......Page 66
Limiting groups in two and three dimensions......Page 67
Representation of a group......Page 68
Character tables......Page 69
The G2 groups......Page 70
The G3 groups......Page 71
The groups of colour symmetry......Page 72
References......Page 75
The metric matrix......Page 76
The reciprocal lattice......Page 78
Basis transformations......Page 80
Transformation from triclinic to orthonormal axes......Page 83
Rotations in Cartesian systems......Page 84
Torsion angles......Page 88
Best plane through a set of points......Page 89
Principal axes of a quadratic form......Page 90
Niggli reduced cell......Page 92
Sublattices and superlattices......Page 95
Coincidence-site lattices......Page 96
Twins......Page 98
Calculation of the structure factor......Page 102
Calculation of the electron density function......Page 103
Linear least squares......Page 105
Linear least squares with constraints......Page 107
Non-linear (unconstrained) least squares......Page 108
Least-squares refinement of crystal structures......Page 109
Practical considerations on crystallographic least squares......Page 113
Constraints and restraints in crystallographic least squares......Page 119
Rigid body refinemenP1......Page 120
Constraints via Lagrangian multipliers......Page 121
Use of restraints......Page 122
Alternatives to the method of least squares......Page 123
The basis of the technique......Page 124
Some practical aspects of Rietveld refinement......Page 127
Analysis of thermal motion......Page 132
The effect of thermal motion on bond lengths and angles......Page 135
About the accuracy of the calculated parameters......Page 137
2.A Some metric relations between direct and reciprocal lattices......Page 139
2.B Some geometrical calculations concerning directions and planes......Page 140
2.D Reciprocity of F and I lattices......Page 142
2.E Transformations of crystallographic quantities in rectilinear spaces......Page 143
2.F Derivation of the normal equations......Page 145
2.1 The FFT algorithm and its crystallographic applications......Page 146
2.J Examples of twin laws......Page 148
Orthorhombic system......Page 149
Triclinic system......Page 150
References......Page 152
Introduction......Page 156
Thomson scattering......Page 157
Interference of scattered waves......Page 159
Scattering by atomic electrons......Page 161
Scattering by atoms......Page 162
The temperature factor......Page 163
Scattering by a molecule or by a unit cell......Page 165
Diffraction by a crystal......Page 166
The reflection and the limiting spheres......Page 169
Friedel law......Page 170
Determination of the Laue class......Page 171
Determination of reflections with restricted phase values......Page 172
Systematic absences......Page 174
Diffraction intensities......Page 176
Anomalous dispersion......Page 180
The Fourier synthesis and the phase problem......Page 184
Modulated crystal structures......Page 186
The Dirac delta function......Page 188
The Fourier transform......Page 190
Some examples of Fourier transform......Page 191
Fourier transform of spherically symmmetric functions......Page 195
Convolutions......Page 196
Convolutions involving delta functions......Page 197
Some properties of convolutions......Page 198
Deconvolution of spectra......Page 199
Compton scattering......Page 200
The anisotropic temperature factor......Page 201
Symmetry restrictions on the anisotropic temperature factors......Page 203
The Renninger effect and experimental phase determination by means of multiple diffraction experiments......Page 206
Electron diffraction......Page 210
Neutron scattering......Page 213
Introduction......Page 216
Diffraction from a finite statistically homogeneous object......Page 217
Diffraction from a finite statistically homogeneous object with equal atoms......Page 219
Diffraction from an isotropic statistically homogeneous object......Page 221
The Debye formula......Page 222
Diffraction by gases......Page 223
Diffraction by liquids and amorphous bodies......Page 227
Small-angle scattering......Page 228
3.D About electron density mapping......Page 231
Embedding of modulated structures in higher-dimensional space......Page 236
Quasicrystals......Page 238
References......Page 241
The origin of X-rays in the conventional sources......Page 244
Sealed-tube and rotating-anode generators......Page 246
Choice of the type of radiation......Page 248
Generation of X-rays in a synchrotron radiation source......Page 249
Comparison of synchrotron and conventionally generated X-rays......Page 254
Filters......Page 256
Crystal monochromators......Page 258
Collimators......Page 259
Data collection techniques for single crystals......Page 260
The cylindrical film rotation camera......Page 262
Zero-level Weissenberg photographs......Page 263
Upper-level Weissenberg photographs......Page 267
The precession motion......Page 269
Isolating a zero-level reciprocal lattice plane......Page 271
Upper-level precession photographs......Page 272
The rotation (oscillation) method in macromolecular crystallography......Page 274
Geometry of the rotation method......Page 276
Calculation of the film coordinates for a reflection......Page 280
Indexing a rotation photograph......Page 282
Densitometry......Page 283
Optical density and integrated intensity......Page 284
Film as an X-ray detector......Page 285
Microdensitometers......Page 286
Diffractometer geometry......Page 288
Determination of the crystal orientation and unit cell parameters: the orientation matrix......Page 291
Measurement of the integrated intensities......Page 293
Area detectors......Page 296
Principles of operation of area detectors......Page 297
Data collection with an area detector......Page 299
X-ray diffraction of polycrystalline materials......Page 302
Cameras used for polycrystalline materials......Page 304
Diffractometers used for polycrystalline materials......Page 308
Uses of powder diffraction......Page 312
Lorentz correction......Page 316
Polarization correction......Page 318
Absorption corrections......Page 319
Radiation damage corrections......Page 323
Relative scaling......Page 325
4.A Determination of the number of molecules in the unit cell of a crystal......Page 327
References......Page 329
Introduction......Page 334
Statistical analysis of structure factor amplitudes......Page 336
The Patterson function and its use......Page 339
The heavy atom method......Page 343
Introduction......Page 350
Structure invariants and semi-invariants......Page 352
Probability methods......Page 355
Fixing the origin and the enantiomorph......Page 361
Setting up phase relationships......Page 366
Definition of an optimum starting set of phases......Page 367
Figures of merit......Page 370
Electron density maps (E-maps)......Page 371
Symbolic addition method......Page 373
Multisolution methods......Page 375
Completing and refining the structure......Page 380
Difference Fourier method......Page 381
Least-squares method......Page 382
Absolute configuration......Page 389
5.A Structure factor probability distributions......Page 390
5.B Patterson vector methods......Page 392
5.C Two examples of deriving phase information from positivity......Page 399
5.D Probability formulae for triplet invariants......Page 400
5.E Pseudotranslational symmetry......Page 402
5.F Magic integers......Page 403
5.G New multisolution techniques......Page 405
Weights for Fourier syntheses......Page 408
Syntheses for completing a partial model......Page 409
References......Page 412
Atoms with a single electron......Page 418
Atoms with more than one electron......Page 419
Notes on chemical bonds......Page 421
lonic crystals......Page 424
Lattice energy: the contributions of attractive and repulsive terms......Page 425
Lattice energy: CFSE contribution......Page 429
Applications of lattice energy calculations......Page 432
Ionic radius......Page 433
Maximum filling principle......Page 439
Radius ratio rule......Page 440
Applications of the concept of ionic radius......Page 442
Closest packings......Page 444
Pauling's second rule......Page 448
Pauling's third rule......Page 450
Ideal and defect structures......Page 451
MX structures......Page 452
MX2 and M,X structures......Page 453
MX3 and M2X3 structures......Page 455
A,B,X, structures......Page 456
On the classification of silicates......Page 460
Liebau's crystallochemical classification......Page 462
Relationship between classification parameters and properties of the cations......Page 468
6.A Application of the concept of the packing coefficient (ci)......Page 471
6.B Structural inferences from crystallochemical parameters......Page 474
References......Page 478
Crystal and molecular structure......Page 480
The growth of structural information......Page 482
Repulsion or exchange forces......Page 483
Monopolar forces......Page 484
2. Medium H-bonding......Page 485
(a) Charge assisted H-bonding......Page 486
Intermolecular forces and crystal packing......Page 487
Dispersion energy......Page 488
Atom-atom potentials......Page 489
Electrostatic energies......Page 490
4. Hydrogen bonding......Page 492
Thermodynamics of molecular crystals......Page 493
Free and lattice energy of a crystal from atom-atom potentials......Page 495
Polymorphism and the prediction of crystal structures......Page 497
Effect of crystal forces on molecular geometry......Page 498
Structure: constitution, configuration, and conformation......Page 499
Configurational isomerism......Page 501
Ring conformations......Page 505
Ring conformation and group theory......Page 507
Computation of puckering coordinates......Page 513
2. Valence shell electron pair repulsion (VSEPR) theory.[......Page 514
6. Other qualitative theories.......Page 515
The VSEPR theory......Page 516
Valence bond (VB) theory......Page 517
Hybridization. The machinery......Page 519
Molecular mechanics......Page 521
2. Bond angle bending......Page 522
6. Non-bonded interactions.......Page 523
7. Electrostatic interactions......Page 524
Correlative methods in structural analysis......Page 526
Some three-centre-four-electron linear systems......Page 527
Nucleophilic addition to organometallic compounds......Page 529
Nucleophilic addition to the carbonyl group......Page 530
A case of conformational rearrangement......Page 531
Resonance assisted hydrogen bonding (RAHB)......Page 536
References......Page 544
Introduction......Page 550
Principles of protein crystallization......Page 551
Preparation of isomorphous heavy-atom derivatives......Page 553
The isomorphous replacement method......Page 555
The determination of heavy-atom positions......Page 556
The single isomorphous replacement (SIR) method......Page 557
The classical solution of the problem of phase ambiguity: the MIR technique......Page 558
Anomalous scattering: a complementary (or alternative) approach to the solution of the phase problem......Page 559
The use of anomalous scattering in the determination of the absolute configuration of the macromolecule......Page 560
The treatment of errors......Page 561
The refinement of heavy-atom parameters......Page 564
A third approach to the solution of the phase ambiguity: real-space filtering......Page 566
Rotation and translation functions and the molecular replacement method......Page 567
The first step in molecular replacement: the rotation function......Page 568
The rotation matrix C and the choice of variables......Page 570
Translation functions......Page 571
Self-rotation and self-translation functions: improving the electron density maps......Page 573
Direct methods and the maximum-entropy principle in macromolecular crystallography......Page 575
Interactive computer graphics and model building......Page 577
The refinement of the structure......Page 578
Constrained versus restrained least squares......Page 579
Restrained and constrained least squares......Page 583
Crystallographic refinement by molecular dynamics......Page 584
The strategy of the refinement of protein structures......Page 585
Protein structure......Page 587
General aspects......Page 588
Levels of organization of proteins: secondary structure......Page 589
Polypeptide chain description......Page 592
Higher levels of organization: tertiary and quaternary structure, domains, and subunits......Page 593
Groups other than amino acids......Page 597
Solvent structure......Page 598
The influence of crystal packing......Page 599
Protein classification......Page 600
Appendix 8.A Some formulae for isomorphous replacement and anomalous dispersion......Page 602
Appendix 8.B Translation functions......Page 603
Appendix 8.C Macromolecular least-squares refinement and the conjugate-gradient algorithm......Page 605
Appendix 8.D Conventions and symbols for amino acids and peptides......Page 606
References......Page 609
Introduction......Page 614
Tensorial quantities......Page 615
Symmetry of tensorial properties......Page 618
Electrical properties of crystals......Page 620
Pyroelectricity......Page 621
Dielectric impermeability and optical properties......Page 622
Elastic properties of crystals......Page 623
Crystal strain......Page 624
Inner deformation......Page 626
Stress tensor......Page 628
Elasticity tensor......Page 629
Examples and applications......Page 632
Piezoelectricity......Page 634
Symmetry properties of the piezoelectric tensor......Page 635
Crystal defects......Page 637
Experimental methods......Page 638
Planar defects......Page 640
Line defects: dislocations......Page 643
The Burgers circuit......Page 644
X-ray topography of dislocations......Page 645
Energy of a dislocation......Page 647
Motion and interaction of dislocations......Page 648
Partial dislocations......Page 649
Point defects......Page 650
Thermal distribution of defects......Page 651
Diffusion......Page 652
Ionic conductivity......Page 654
Eigenvalues and eigenvectors......Page 655
Representation surfaces and their properties......Page 656
Further reading......Page 657
Subject index......Page 660