ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fundamentals of Chemical Reactor Engineering: A Multi-Scale Approach

دانلود کتاب مبانی مهندسی راکتور شیمیایی: یک رویکرد چند مقیاسی

Fundamentals of Chemical Reactor Engineering: A Multi-Scale Approach

مشخصات کتاب

Fundamentals of Chemical Reactor Engineering: A Multi-Scale Approach

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9781119755890 
ناشر: John Wiley & Sons 
سال نشر: 2022 
تعداد صفحات: 345
[346] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 Mb 

قیمت کتاب (تومان) : 28,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Fundamentals of Chemical Reactor Engineering: A Multi-Scale Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی مهندسی راکتور شیمیایی: یک رویکرد چند مقیاسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Fundamentals of Chemical Reactor Engineering: A Multi-Scale Approach
Copyright
Dedication
Contents
Preface
Foreword
Foreword 2
About the Authors and Acknowledgments
List of Symbols
About the Companion Website
1. Rate Concept and Species Conservation Equations in Reactors
	1.1 Reaction Rates of Species in Chemical Conversions
	1.2 Rate of a Chemical Change
	1.3 Chemical Reactors and Conservation of Species
	1.4 Flow Reactors and the Reaction Rate Relations
	1.5 Comparison of Perfectly Mixed Flow and Batch Reactors
	1.6 Ideal Tubular Flow Reactor
	1.7 Stoichiometric Relations Between Reacting Species
		1.7.1 Batch Reactor Analysis
		1.7.2 Steady-Flow Analysis for a CSTR
		1.7.3 Unsteady Perfectly Mixed-Flow Reactor Analysis
	Problems and Questions
	References
2. Reversible Reactions and Chemical Equilibrium
	2.1 Equilibrium and Reaction Rate Relations
	2.2 Thermodynamics of Chemical Reactions
	2.3 Different Forms of Equilibrium Constant
	2.4 Temperature Dependence of Equilibrium Constant and Equilibrium Calculations
	Problems and Questions
	References
3. Chemical Kinetics and Analysis of Batch Reactors
	3.1 Kinetics and Mechanisms of Homogeneous Reactions
	3.2 Batch Reactor Data Analysis
		3.2.1 Integral Method of Analysis
			3.2.1.1 First-Order Reaction
			3.2.1.2 nth-Order Reaction and Method of Half-Lives
			3.2.1.3 Overall Second-Order Reaction Between Reactants A and B
			3.2.1.4 Second-Order Autocatalytic Reactions
			3.2.1.5 Zeroth-Order Dependence of Reaction Rate on Concentrations
			3.2.1.6 Data Analysis for a Reversible Reaction
		3.2.2 Differential Method of Data Analysis
	3.3 Changes in Total Pressure or Volume in Gas-Phase Reactions
	Problems and Questions
	References
4. Ideal-Flow Reactors: CSTR and Plug-Flow Reactor Models
	4.1 CSTR Model
		4.1.1 CSTR Data Analysis
	4.2 Analysis of Ideal Plug-Flow Reactor
	4.3 Comparison of Performances of CSTR and Ideal Plug-Flow Reactors
	4.4 Equilibrium and Rate Limitations in Ideal-Flow Reactors
	4.5 Unsteady Operation of Reactors
		4.5.1 Unsteady Operation of a Constant Volume Stirred-Tank Reactor
		4.5.2 Semi-batch Reactors
	4.6 Analysis of a CSTR with a Complex Rate Expression
		Problems and Questions
	References
5. Multiple Reactor Systems
	5.1 Multiple CSTRs Operating in Series
		5.1.1 Graphical Method for Multiple CSTRs
	5.2 Multiple Plug-Flow Reactors Operating in Series
	5.3 CSTR and Plug-Flow Reactor Combinations
	Problems and Questions
	References
6. Multiple Reaction Systems
	6.1 Selectivity and Yield Definitions
	6.2 Selectivity Relations for Ideal Flow Reactors
	6.3 Design of Ideal Reactors and Product Distributions for Multiple Reaction Systems
		6.3.1 Parallel Reactions
		6.3.2 Consecutive Reactions
	Problems and Questions
	References
7. Heat Effects and Non-isothermal Reactor Design
	7.1 Heat Effects in a Stirred-Tank Reactor
	7.2 Steady-State Multiplicity in a CSTR
	7.3 One-Dimensional Energy Balance for a Tubular Reactor
	7.4 Heat Effects in Multiple Reaction Systems
		7.4.1 Heat Effects in a CSTR with Parallel Reactions
		7.4.2 Heat Effects in a CSTR with Consecutive Reactions
		7.4.3 Energy Balance for a Plug-Flow Reactor with Multiple Reactions
	7.5 Heat Effects in Multiple Reactors and Reversible Reactions
		7.5.1 Temperature Selection and Multiple Reactor Combinations
			7.5.1.1 Endothermic-Reversible Reactions in a Multi-stage Reactor System
		7.5.2 Cold Injection Between Reactors
		7.5.3 Heat-Exchanger Reactors
	Problems and Questions
	Case Studies
	References
8. Deviations from Ideal Reactor Performance
	8.1 Residence Time Distributions in Flow Reactors
	8.2 General Species Conservation Equation in a Reactor
	8.3 Laminar Flow Reactor Model
	8.4 Dispersion Model for a Tubular Reactor
	8.5 Prediction of Axial Dispersion Coefficient
	8.6 Evaluation of Dispersion Coefficient by Moment Analysis
	8.7 Radial Temperature Variations in Tubular Reactors
	8.8 A Criterion for the Negligible Effect of Radial Temperature Variations on the Reaction Rate
	8.9 Effect of L/dt Ratio on the Performance of a Tubular Reactor and Pressure Drop
	Problems and Questions
	Exercises
	References
9. Fixed-Bed Reactors and Interphase Transport Effects
	9.1 Solid-Catalyzed Reactions and Transport Effects Within Reactors
	9.2 Observed Reaction Rate and Fixed-Bed Reactors
	9.3 Significance of Film Mass Transfer Resistance in Catalytic Reactions
	9.4 Tubular Reactors with Catalytic Walls
		9.4.1 One-Dimensional Model
		9.4.2 Two-Dimensional Model
	9.5 Modeling of a Non-isothermal Fixed-Bed Reactor
	9.6 Steady-State Multiplicity on the Surface of a Catalyst Pellet
	Exercises
	References
10. Transport Effects and Effectiveness Factor for Reactions in Porous Catalysts
	10.1 Effectiveness Factor Expressions in an Isothermal Catalyst Pellet
	10.2 Observed Activation Energy and Observed Reaction Order
	10.3 Effectiveness Factor in the Presence of Pore-Diffusion and Film Mass Transfer Resistances
	10.4 Thermal Effects in Porous Catalyst Pellets
	10.5 Interphase and Intrapellet Temperature Gradients for Catalyst Pellets
	10.6 Pore Structure Optimization and Effectiveness Factor Analysis for Catalysts with Bi-modal Pore-Size Distributions
	10.7 Criteria for Negligible Transport Effects in Catalytic Reactions
		10.7.1 Criteria for Negligible Diffusion and Heat Effects on the Observed Rate of Solid-Catalyzed Reactions
		10.7.2 Relative Importance of Concentration and Temperature Gradients in Catalyst Pellets
		10.7.3 Intrapellet and External Film Transport Limitations
		10.7.4 A Criterion for Negligible Diffusion Resistance in Bidisperse Catalyst Pellets
	10.8 Transport Effects on Product Selectivities in Catalytic Reactions
		10.8.1 Film Mass Transfer Effect
		10.8.2 Pore-Diffusion Effect
	Problems and Questions
	Exercises
	References
11. Introduction to Catalysis and Catalytic Reaction Mechanisms
	11.1 Basic Concepts in Heterogeneous Catalysis
	11.2 Surface Reaction Mechanisms
	11.3 Adsorption Isotherms
	11.4 Deactivation of Solid Catalysts
	Exercises
	References
12. Diffusion in Porous Catalysts
	12.1 Diffusion in a Capillary
	12.2 Effective Diffusivities in Porous Solids
	12.3 Surface Diffusion
	12.4 Models for the Prediction of Effective Diffusivities
		12.4.1 Random Pore Model
		12.4.2 Grain Model
	12.5 Diffusion and Flow in Porous Solids
	12.6 Experimental Methods for the Evaluation of Effective Diffusion Coefficients
		12.6.1 Steady-State Methods
		12.6.2 Dynamic Methods
		12.6.3 Single-Pellet Moment Method
	Exercises
	References
13. Process Intensification and Multifunctional Reactors
	13.1 Membrane Reactors
		13.1.1 Modeling of a Membrane Reactor
		13.1.2 General Conservation Equations and Heat Effects in a Membrane Reactor
	13.2 Reactive Distillation
		13.2.1 Equilibrium-Stage Model
		13.2.2 A Rate-Based Model for a Continuous Reactive Distillation Column
	13.3 Sorption-Enhanced Reaction Process
	13.4 Monolithic and Microchannel Reactors
		13.4.1 Microchannel Reactors
	13.5 Chromatographic Reactors
	13.6 Alternative Energy Sources for Chemical Processing
		13.6.1 Microwave-Assisted Chemical Conversions
		13.6.2 Ultrasound Reactors
		13.6.3 Solar Energy for Chemical Conversion
	References
14. Multiphase Reactors
	14.1 Slurry Reactors
	14.2 Trickle-Bed Reactors
	14.3 Fluidized-Bed Reactors
	References
15. Kinetics and Modeling of Non-catalytic Gas–Solid Reactions
	15.1 Unreacted-Core Model
	15.2 Deactivation and Structural Models for Gas–Solid Reactions
	15.3 Chemical Vapor Deposition Reactors
	Exercises
	References
Appendix A. Some Constants of Nature
Appendix B. Conversion Factors
Appendix C. Dimensionless Groups and Parameters
Index




نظرات کاربران