دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Amy E. Frazier (editor), Kunwar K. Singh (editor) سری: ISBN (شابک) : 0367245728, 9780367245726 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 386 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Fundamentals of Capturing and Processing Drone Imagery and Data به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی ضبط و پردازش تصاویر و داده های پهپاد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیستمهای هواپیمای بدون سرنشین (UAS) بهسرعت بهعنوان پلتفرمهای انعطافپذیر برای ثبت تصاویر و سایر دادهها در سراسر علوم در حال ظهور هستند. بسیاری از کالج ها و دانشگاه ها در حال توسعه دوره هایی در زمینه اکتساب داده های مبتنی بر UAS هستند. مبانی گرفتن و پردازش تصاویر و داده های هواپیماهای بدون سرنشین متنی جامع و مقدماتی در مورد نحوه استفاده از سیستم های هواپیمای بدون سرنشین برای جمع آوری و تجزیه و تحلیل داده ها است. این بهترین روشها را برای برنامهریزی مأموریتهای جمعآوری داده و ماژولهای یادگیری عملی برای جمعآوری، پردازش و برنامههای کاربردی داده UAS ارائه میکند.
ویژگیها
p></ p>
این کتاب مقدمه ای کلی برای پهپادها همراه با مجموعهای از تمرینهای عملی که دانشآموزان و محققان میتوانند برای یادگیری ادغام دادههای پهپاد در برنامههای کاربردی دنیای واقعی با آنها همکاری کنند. برای استفاده از این کتاب به هیچ پیشینه قبلی در سنجش از دور، GIS یا دانش پهپاد نیاز نیست. خوانندگان یاد خواهند گرفت که انواع مختلف تصاویر UAS را برای کاربردها (مانند کشاورزی دقیق، جنگلداری، مناظر شهری) پردازش کنند و این دانش را در نظارت بر محیط زیست و مطالعات کاربری زمین به کار ببرند.
Unmanned aircraft systems (UAS) are rapidly emerging as flexible platforms for capturing imagery and other data across the sciences. Many colleges and universities are developing courses on UAS-based data acquisition. Fundamentals of Capturing and Processing Drone Imagery and Data is a comprehensive, introductory text on how to use unmanned aircraft systems for data capture and analysis. It provides best practices for planning data capture missions and hands-on learning modules geared toward UAS data collection, processing, and applications.
FEATURES
This book provides a general introduction to drones along with a series of hands-on exercises that students and researchers can engage with to learn to integrate drone data into real-world applications. No prior background in remote sensing, GIS, or drone knowledge is needed to use this book. Readers will learn to process different types of UAS imagery for applications (such as precision agriculture, forestry, urban landscapes) and apply this knowledge in environmental monitoring and land-use studies.
Cover Half Title Title Page Copyright Page Table of Contents Preface Acknowledgments Editors Contributors Acronyms and Abbreviations Part I: Getting Started with Drone Imagery and Data Chapter 1: Introduction to Capturing and Processing Drone Imagery and Data Introduction Book Structure Drone Terminology Flying and Safe Operations Platforms Fixed-Wing Platforms Rotary-Wing Platforms Which Platform to Choose? Payload Cameras and Non-imagery Sensors Drone Applications Agriculture Wildlife Surveys Geomorphology Historical and Cultural Heritage Preservation Atmospheric Studies Other Applications (Table 1.1) Ethics and Privacy References Chapter 2: An Introduction to Drone Remote Sensing and Photogrammetry Introduction Remote Sensing with Drones A Brief History of Aerial Photography and Photogrammetry Origins of Photography Origins of Aerial Photography Photogrammetry and Modern Mapping Modern Photogrammetry Using Drone Imagery General Considerations for Capturing Images with Drones Radiometric Errors and Effects Radiometric Correction Geometric Errors and Effects Georeferencing and Geometric Correction Doming and Dishing Data Products Derived from Drone Images Georeferenced Point Clouds Digital Elevation Models Orthophotos and Orthomosaics Image Enhancement and Classification Radiometric Enhancement Spatial Enhancement Spectral Enhancement Image Classification Summary References Suggested Readings Chapter 3: Choosing a Sensor for UAS Imagery Collection Introduction Passive and Active Sensors Passive Sensors Pushbroom versus Frame Cameras Active Sensors Discrete Return versus Full-Waveform Lidar Sensor Characteristics Sensor Size and Resolution Focal Length Shutter Type Lens Type Gimbals Additional Considerations Geometric Camera Calibration Boresight Calibration Radiometry and Radiometric Calibration Radiometric Calibration Common Passive Sensors used with Drones RGB Cameras Multispectral Sensors Hyperspectral Sensors Thermal Cameras Radiometric Accuracy Resolution and Frame Rate Summary References Chapter 4: Mission Planning for Capturing UAS Imagery Introduction Defining Product Specifications and Accuracy Requirements Researching Operational Site Restrictions Topographic Maps Sectional Aeronautical Charts Selecting an Imaging Sensor and Computing Image Geometry The Digital Sensor (Camera) Focal Plane and CCD Array Lens Cone and Camera Lens Shutters Filters Diaphragm Geometry of Vertical Imagery Scale of Vertical Imagery Imagery Overlap Image Ground Coverage Planning Aerial Imagery Collection Design a Flight Plan Project Geometry and Flying Direction Camera Mounting Computing the Number of Flight Lines Computing the Number of Images Computing the Flying Altitude UAS Flight Speed for Image Collection Computing the Time between Consecutive Images Waypoints Exercise to Design a Flight Plan and Layout Estimating Costs and Developing a Delivery Schedule Delivery Schedule Solution to Design a Flight Plan and Layout Chapter 5: Drone Regulations: What You Need to Know before You Fly The U.S. Code of Federal Regulations The Most Recent Drone Regulations: 14 CFR Part 107 Regulation versus Guidance: Safe Operations Are More than a One-Stop Shop History of Drone Regulations: The Field Is Older than You Might Think The Evolution of CFR 14 (And Its Many Acronyms!) Public Operations: Not as Simple as They May Seem 333 Exemption: A Stopgap Measure Recreational Operations: Disruptive Regulation 14 CFR Part 107…Finally! The Final Word for Now: FAA Reauthorization Act of 2018 Key Components for Safe Operations: Checklists and Emergency Procedures Solutions to Hands-On Activities Box 5.1 Hands-On Activity - Can You Find the Helicopter? Box 5.4 Safe Operations Activity UM Phantom 4 Pro field preflight checklist UM Phantom 4 Pro field post-flight checklist References Chapter 6: Structure from Motion (SfM) Workflow for Processing Drone Imagery Introduction Image Processing with Structure from Motion (SfM) Georeferencing Multi-View Stereo Data Products Digital Elevation, Terrain, and Surface Models Orthophotos SfM Considerations Image Capture Camera Calibration Image Characteristics Multispectral and Hyperspectral Imaging Data Software Applications Outlook References Software Resources Chapter 7: Aerial Cinematography with UAS Introduction Quantitative Mapping versus Qualitative Videos Geographic Communication with Aerial Cinematography Abstracted Views and Phantom Rides Communicating through UAS Aerial Cinematography Camera Angle Navigation Narration Planning and Executing a Successful UAS Aerial Cinematography Mission Selecting a Platform and Accessories Techniques for Capturing Great Videos Example Applications for UAS Aerial Cinematography Environmental and Social Impact Assessments Tourism Journalism Community Engagement Participatory Methods and Mapping References Other Useful Links Open-source Hollywood Part II: Hands-On Applications Using Drone Imagery and Data Chapter 8: Planning Unoccupied Aircraft Systems (UAS) Missions Learning Objectives Hardware and Software Requirements Part 1: Overview of Mission Planner Exercise 1.1: Downloading and Installing Mission Planner Exercise 1.2: Navigating Mission Planner Part 2: Mission Planning in a Familiar Landscape Exercise 2.1: Exploring the Area of Interest Exercise 2.2: Defining the Boundaries of the Area of Interest Exercise 2.3: Creating the UAS Mission Part 3: Mission Planning for the Unfamiliar Landscape Exercise 3.1: Exploring the Area of Interest Exercise 3.2: Defining a UAS Mission within an Area of Interest Exercise 3.3: Creating the UAS Mission Optional Exercise: Collect Study Area GPS Data Yourself Discussion and Synthesis Questions Acknowledgments References Chapter 9: Aligning and Stitching Drone-Captured Images Learning Objectives Hardware and Software Requirements Introduction Workflow for Stitching Drone-captured Images General Considerations for High-quality Image Stitching Exercise: Creating a Stitched Orthomosaic from Drone-captured Images Discussion and Synthesis Questions Acknowledgments References Chapter 10: Counting Wildlife from Drone-Captured Imagery Using Visual and Semi-Automated Techniques Learning Objectives Software and Hardware Requirements Introduction Methods for Computer-aided Image Interpretation Study Area and Data Workflow and Exercises Exercise 1: Visually Interpreting Drone Images for Counting Greater Crested Terns Exercise 2: Semi-automated Wildlife Counting Exercise 3: Evaluating Performance and Accuracy Discussion and Synthesis Questions Acknowledgments References Chapter 11: Terrain and Surface Modeling of Vegetation Height Using Simple Linear Regression Learning Objectives Hardware and Software Requirements Datasets Introduction Part 1: Developing a Digital Elevation Model (DEM) Exercise 1.1: Building the SfM Point Cloud Exercise 1.2: Classifying Ground Points for the SfM Point Cloud Exercise 1.3: Creating a DEM Using Classified Ground Points Part 2: Mapping Vegetation Height using 3D Data Exercise 2.1: Importing SfM Points into a GIS and Calculating Their Height above Ground Exercise 2.3: Performing Simple Linear Regression and Applying Height Estimate Models to the Entire Study Area Acknowledgments References Chapter 12: Assessing the Accuracy of Digital Surface Models of an Earthen Dam Derived from SfM Techniques Learning Objectives Hardware and Software Requirements Introduction Study Area and Data Collection Part 1: Evaluating 3D Model Accuracy using only the Geotagged Images Exercise 1.1: Evaluate the Accuracy of a 3D Model Derived from Flight 1 Exercise 1.2: Evaluate the Accuracy of a 3D Model Derived from Flight 2 and Flight 3 Part 2: Evaluating the Impact of GCP Density and Distribution on DSM Accuracy Exercise 2: Evaluate the Vertical Accuracy of the DSM Generated Using Flights 2 and 3 with a Variable Number of GCPs Summary and Wrap-Up Discussion And Synthesis Questions Collecting the Data Yourself (Optional) Acknowledgments References Chapter 13: Estimating Forage Mass from Unmanned Aircraft Systems in Rangelands Learning Objectives Hardware and Software Requirements Introduction Study Area Part 1: Processing UAS Imagery into a DSM and Orthomosaic Part 2: Linear Regression: Volumes and Forage Mass Part 3: Forage Mass Estimation Discussion and Synthesis Questions Acknowledgments References Other Resources Chapter 14: Applications of UAS-Derived Terrain Data for Hydrology and Flood Hazard Modeling Learning Objectives Hardware and Software Requirements Part 1: Getting to Know the Terrain and Hydrology of the Study Area Introduction Study Area Exercise 1: Visualize and Examine Digital Elevation Models of the Study Area Exercise 2: Analyze Terrain with Neighborhood Functions Part 2: Modeling Flood Hazard with Drone Data Exercise 2.1: Load UAS Terrain Data into HEC-RAS Exercise 2.2: Model Flow Area Setup Exercise 2.3: Modeling Unsteady Flow Exercise 2.4: Visualizing the Modeling Results Discussion and Synthesis Questions Collecting the Data Yourself (OPTIONAL) Acknowledgments Notes References Chapter 15: Comparing UAS and Terrestrial Laser Scanning Methods for Change Detection in Coastal Landscapes Learning Objectives Hardware and Software Requirements Objectives and Key Concepts Introduction Coastal Foredune Systems Geomorphic Change Detection (GCD) Exercise: Terrain Modeling and Geomorphic Change Detection in a Dynamic, Vegetated Coastal Dune Landscape Exercise 1: Simple Geomorphic Change Detection Comparison Using UAS-Derived DSMs Exercise 2: Examining Geomorphic Change Detection Differences between UAS and TLS-Derived Datasets Exercise 3: Spatial-Temporal Geomorphic Change Detection Using Repeat DEMs to Analyze Landscape Morphodynamics Discussion and Synthesis Questions Collecting the Data Yourself (Optional) Gradual Selection Tie Point Quality Control: Weighing Observations Outlier Observations of GCPs Build Dense Cloud Ground Point and Vegetation Classification Build Mesh Build Texture Build Digital Elevation Model (DEM) Build Orthomosaic Note References Chapter 16: Digital Preservation of Historical Heritage Using 3D Models and Augmented Reality Learning Objectives Hardware and Software Requirements Datasets Introduction Considerations when Capturing Drone Imagery for Digital Preservation Regulations and Sensitivities Representation of Area of Interest Time of Data Acquisition Camera Angle Historical Context: The Old Athens Cemetery Part 1: Image Collection and Generation of 3D Models and Orthomosaic Ground Level Image Collection Exercise 1.1: Building a 3D Model of a Historical Landscape Exercise 1.2: Building a Detailed 3D Model of a Historical Object Exercise 1.3: Product Integration and 3D Model Visualization Using a Geographic Information System Part 2: Using Augmented Reality to Explore Computer Vision-Derived 3D Models Discussion and Synthesis Questions Acknowledgments References Chapter 17: Identifying Burial Mounds and Enclosures Using RGB and Multispectral Indices Derived from UAS Imagery Learning Objectives Hardware and Software Requirements Introduction Indices Computed from RGB Imagery Indices Computed from Multispectral Imagery Part 1: Generating an Orthomosaic from UAS-Derived RGB Imagery Exercise 1.1: Building a Sparse Point Cloud and Mesh Exercise 1.2: Optimizing the Sparse Point Cloud Exercise 1.3: Building a 3D Model (Mesh) Exercise 1.4: Generating an Orthomosaic Part 2: Generating Spectral Indices from UAS-Derived Orthomosaics Exercise 2.1: Setting Up R & RStudio Exercise 2.2: Working with the RGB Orthomosaic Exercise 2.2.1: Convert the RGB Orthomosaic to the Desired Resolution and Projection Exercise 2.2.2: Crop the RGB Orthomosaic to the Desired Extent Exercise 2.2.3: Calculate Spectral Indices Using the RGB Orthomosaic Exercise 2.3: Working with the Multispectral Orthomosaics Exercise 2.3.1: Change the Multispectral Orthomosaics to the Desired Resolution and Projection Exercise 2.3.2: Crop the Multispectral Orthomosaics to the Desired Extent Exercise 2.3.3: Reset the Origin of the Multispectral Orthomosaics Exercise 2.3.4: Calculate Indices from the Multispectral Orthomosaics Discussion and Synthesis Questions Acknowledgments References Chapter 18: Detecting Scales of Drone-Based Atmospheric Measurements Using Semivariograms Learning Objectives Hardware and Software Requirements Introduction Traditional Atmospheric Measurement Technologies Using Drones to Collect Atmospheric Measurements Spatial Statistics and Geostatistics Spatial Dependence and the Semivariogram Exercises Data and Code Exercise 1: Computing a Sample Variogram and Fitting a Model Exercise 2: Analyzing Scale Changes in Different Atmospheric Situations Discussion and Synthesis Questions Collecting the Data Yourself (Optional) Acknowledgments References Chapter 19: Assessing the Greenhouse Gas Carbon Dioxide in the Atmospheric Boundary Layer Learning Objectives Hardware and Software Requirements Introduction Exercise 1: Post-Processing UAS Atmospheric Data EXERCISE 2: Visualizing Meteorological and CO 2 Boundary Layer Data Discussion and Synthesis Questions Collecting the Data Yourself (Optional) References Glossary Index