دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ابزار ویرایش: 7 نویسندگان: Fawwaz T. Ulaby, Umberto Ravaioli سری: ISBN (شابک) : 0133356817, 9780133356816 ناشر: Prentice Hall سال نشر: 2014 تعداد صفحات: 530 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
کلمات کلیدی مربوط به کتاب اصول الکترومغناطیسی کاربردی: ابزار دقیق، میدان های الکترومغناطیسی و امواج
در صورت تبدیل فایل کتاب Fundamentals of Applied Electromagnetics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول الکترومغناطیسی کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مبانی الکترومغناطیسی کاربردی برای استفاده در دروس یک یا دو ترم در الکترومغناطیسی در نظر گرفته شده است. همچنین به عنوان مرجعی برای مهندسان عمل می کند.
هر دو مورد تحسین گسترده قرار گرفتند در ایالات متحده و خارج از کشور، این متن معتبر، شکاف بین مدارها و مواد الکترومغناطیسی جدید را پر می کند. Ulaby پوشش را با خطوط انتقال آغاز می کند و دانش آموزان را از مفاهیم آشنا به موضوعات و برنامه های پیشرفته تر هدایت می کند. یک رویکرد کاربرپسند، شکل ها و تصاویر تمام رنگی و مجموعه ای از شبیه سازی های تعاملی به خوانندگان کمک می کند تا مفاهیم ارائه شده را درک کنند.
Fundamentals of Applied Electromagnetics is intended for use in one- or two-semester courses in electromagnetics. It also serves as a reference for engineers.
Widely acclaimed both in the U.S. and abroad, this authoritative text bridges the gap between circuits and new electromagnetics material. Ulaby begins coverage with transmission lines, leading students from familiar concepts into more advanced topics and applications. A user-friendly approach, full-color figures and images, and a set of interactive simulations will help readers understand the concepts presented.
Cover Title Copyright Preface to Seventh Edition New to This Edition Acknowledgments Content Message to the Student Acknowledgments List of Technology Briefs Contents List of Modules Photo Credits 1 Introduction: Waves and Phasors 1-1 Historical Timeline 1-1.1 EM in the Classical Era 1-1.2 EM in the Modern Era 1-2 Dimensions, Units, and Notation 1-3 The Nature of Electromagnetism 1-3.1 The Gravitational Force: A Useful Analogue 1-3.2 Electric Fields 1-3.3 Magnetic Fields 1-3.4 Static and Dynamic Fields 1-4 Traveling Waves 1-4.1 Sinusoidal Waves in a Lossless Medium TB 1: LED Lighting 1-4.2 Sinusoidal Waves in a Lossy Medium 1-5 The Electromagnetic Spectrum 1-6 Review of Complex Numbers 1-7 Review of Phasors 1-7.1 Solution Procedure TB 2: Solar Cells 1-7.2 Traveling Waves in the Phasor Domain Chapter 1 Summary Concepts Mathematical and Physical Models Important Terms Problems Section 1-4: Traveling Waves Section 1-5: Complex Numbers Section 1-6: Phasors 2 Transmission Lines 2-1 General Considerations 2-1.1 The Role of Wavelength 2-1.2 Propagation Modes 2-2 Lumped-Element Model 2-3 Transmission-Line Equations 2-4 Wave Propagation on a Transmission Line 2-5 The Lossless Microstrip Line 2-6 The Lossless Transmission Line: General Considerations 2-6.1 Voltage Reflection Coefficient 2-6.2 Standing Waves 2-7 Wave Impedance of the Lossless Line 2-8 Special Cases of the Lossless Line 2-8.1 Short-Circuited Line 2-8.2 Open-Circuited Line 2-8.3 Application of Short-Circuit/ Open-Circuit Technique TB 3: Microwave Ovens 2-8.4 Lines of Length l = nλ/2 2-8.5 Quarter-Wavelength Transformer 2-8.6 Matched Transmission Line: ZL = Z0 2-9 Power Flow on a Lossless Transmission Line 2-9.1 Instantaneous Power 2-9.2 Time-Average Power 2-10 The Smith Chart 2-10.1 Parametric Equations 2-10.2 Wave Impedance 2-10.3 SWR, Voltage Maxima and Minima 2-10.4 Impedance to Admittance Transformations 2-11 Impedance Matching 2-11.1 Lumped-Element Matching 2-11.2 Single-Stub Matching 2-12 Transients on Transmission Lines TB 4: EM Cancer Zappers 2-12.1 Transient Response to a Step Function 2-12.2 Bounce Diagrams Chapter 2 Summary Concepts Mathematical and Physical Models Mathematical and Physical Models (continued) Important Terms Problems Sections 2-1 to 2-4: Transmission-Line Model Section 2-5: The Lossless Microstrip Line Section 2-6: The Lossless Transmission Line: General Considerations Section 2-7: Wave and Input Impedance Section 2-8: Special Cases of the Lossless Line Section 2-9: Power Flow on a Lossless Transmission Line Section 2-10: The Smith Chart Section 2-11: Impedance Matching Section 2-12: Transients on Transmission Lines 3 Vector Analysis 3-1 Basic Laws of Vector Algebra 3-1.1 Equality of Two Vectors 3-1.2 Vector Addition and Subtraction 3-1.3 Position and Distance Vectors 3-1.4 Vector Multiplication 3-1.5 Scalar and Vector Triple Products 3-2 Orthogonal Coordinate Systems 3-2.1 Cartesian Coordinates 3-2.2 Cylindrical Coordinates 3-2.3 Spherical Coordinates 3-3 Transformations between Coordinate Systems 3-3.1 Cartesian to Cylindrical Transformations TB 5: Global Positioning System 3-3.2 Cartesian to Spherical Transformations 3-3.3 Cylindrical to Spherical Transformations 3-3.4 Distance between Two Points 3-4 Gradient of a Scalar Field 3-4.1 Gradient Operator in Cylindrical and Spherical Coordinates 3-4.2 Properties of the Gradient Operator 3-5 Divergence of a Vector Field 3-6 Curl of a Vector Field 3-6.1 Vector Identities Involving the Curl 3-6.2 Stokes’s Theorem TB 6: X-Ray Computed Tomography 3-7 Laplacian Operator Chapter 3 Summary Concepts Mathematical and Physical Models Important Terms Problems Section 3-1: Basic Laws of Vector Algebra Sections 3-2 and 3-3: Coordinate Systems Sections 3-4 to 3-7: Gradient, Divergence, and Curl Operators 4 Electrostatics 4-1 Maxwell’s Equations 4-2 Charge and Current Distributions 4-2.1 Charge Densities 4-2.2 Current Density 4-3 Coulomb’s Law 4-3.1 Electric Field Due to Multiple Point Charges 4-3.2 Electric Field Due to a Charge Distribution 4-4 Gauss’s Law 4-5 Electric Scalar Potential 4-5.1 Electric Potential as a Function of Electric Field 4-5.2 Electric Potential Due to Point Charges 4-5.3 Electric Potential Due to Continuous Distributions 4-5.4 Electric Field as a Function of Electric Potential 4-5.5 Poisson’s Equation 4-6 Conductors TB 7: Resistive Sensors 4-6.1 Drift Velocity 4-6.2 Resistance 4-6.3 Joule’s Law 4-7 Dielectrics 4-7.1 Polarization Field 4-7.2 Dielectric Breakdown 4-8 Electric Boundary Conditions 4-8.1 Dielectric-Conductor Boundary 4-8.2 Conductor-Conductor Boundary 4-9 Capacitance 4-10 Electrostatic Potential Energy TB 8: Supercapacitors as Batteries TB 9: Capacitive Sensors 4-11 Image Method Chapter 4 Summary Concepts Important Terms Mathematical and Physical Models Problems Section 4-2: Charge and Current Distributions Section 4-3: Coulomb’s Law Section 4-4: Gauss’s Law Section 4-5: Electric Potential Section 4-6: Conductors Section 4-8: Boundary Conditions Sections 4-9 and 4-10: Capacitance and Electrical Energy Section 4-12: Image Method 5 Magnetostatics 5-1 Magnetic Forces and Torques 5-1.1 Magnetic Force on a Current-Carrying Conductor 5-1.2 Magnetic Torque on a Current-Carrying Loop 5-2 The Biot–Savart Law 5-2.1 Magnetic Field Due to Surface and Volume Current Distributions 5-2.2 Magnetic Field of a Magnetic Dipole 5-2.3 Magnetic Force Between Two Parallel Conductors 5-3 Maxwell’s Magnetostatic Equations 5-3.1 Gauss’s Law for Magnetism 5-3.2 Ampère\'s Law TB 10: Electromagnets 5-4 Vector Magnetic Potential 5-5 Magnetic Properties of Materials 5-5.1 Electron Orbital and Spin Magnetic Moments 5-5.2 Magnetic Permeability 5-5.3 Magnetic Hysteresis of Ferromagnetic Materials 5-6 Magnetic Boundary Conditions 5-7 Inductance 5-7.1 Magnetic Field in a Solenoid 5-7.2 Self-Inductance TB 11: Inductive Sensors 5-7.3 Mutual Inductance 5-8 Magnetic Energy Chapter 5 Summary Concepts Important Terms Mathematical and Physical Models Problems Section 5-1: Magnetic Forces and Torques Section 5-2: The Biot–Savart Law Section 5-3: Maxwell’s Magnetostatic Equations Section 5-4: Vector Magnetic Potential Section 5-5: Magnetic Properties of Materials Section 5-6: Magnetic Boundary Conditions Sections 5-7 and 5-8: Inductance and Magnetic Energy 6 Maxwell’s Equations for Time-Varying Fields 6-1 Faraday’s Law 6-2 Stationary Loop in a Time-Varying Magnetic Field 6-3 The Ideal Transformer 6-4 Moving Conductor in a Static Magnetic Field TB 12: EMF Sensors 6-5 The Electromagnetic Generator 6-6 Moving Conductor in a Time-Varying Magnetic Field 6-7 Displacement Current 6-8 Boundary Conditions for Electromagnetics 6-9 Charge-Current Continuity Relation 6-10 Free-Charge Dissipation in a Conductor 6-11 Electromagnetic Potentials 6-11.1 Retarded Potentials 6-11.2 Time-Harmonic Potentials Chapter 6 Summary Concepts Mathematical and Physical Models Important Terms Problems Sections 6-1 to 6-6: Faraday’s Law and its Applications Section 6-7: Displacement Current Sections 6-9 and 6-10: Continuity Equation and ChargeDissipation Sections 6-11: Electromagnetic Potentials 7 Plane-Wave Propagation 7-1 Time-Harmonic Fields 7-1.1 Complex Permittivity 7-1.2 Wave Equations 7-2 Plane-Wave Propagation in Lossless Media 7-2.1 Uniform Plane Waves 7-2.2 General Relation between E and H TB 13: RFID Systems 7-3 Wave Polarization 7-3.1 Linear Polarization 7-3.2 Circular Polarization 7-3.3 Elliptical Polarization 7-4 Plane-Wave Propagation in Lossy Media 7-4.1 Low-Loss Dielectric 7-4.2 Good Conductor TB 14: Liquid Crystal Display (LCD) 7-5 Current Flow in a Good Conductor 7-6 Electromagnetic Power Density 7-6.1 Plane Wave in a Lossless Medium 7-6.2 Plane Wave in a Lossy Medium 7-6.3 Decibel Scale for Power Ratios Chapter 7 Summary Concepts Mathematical and Physical Models Important Terms Problems Section 7-2: Plane-Wave Propagation in Lossless Media Section 7-3: Wave Polarization Section 7-4: Plane-Wave Propagation in Lossy Media Section 7-5: Current Flow in Conductors Section 7-6: Electromagnetic Power Density 8 Wave Reflection and Transmission 8-1 Wave Reflection and Transmission at Normal Incidence 8-1.1 Boundary between Lossless Media 8-1.2 Transmission-Line Analogue 8-1.3 Power Flow in Lossless Media 8-1.4 Boundary between Lossy Media 8-2 Snell’s Laws 8-3 Fiber Optics 8-4 Wave Reflection and Transmission at Oblique Incidence TB 15: Lasers 8-4.1 Perpendicular Polarization 8-4.2 Parallel Polarization 8-4.3 Brewster Angle 8-5 Reflectivity and Transmissivity 8-6 Waveguides TB 16: Bar-Code Readers 8-7 General Relations for E and H 8-8 TM Modes in Rectangular Waveguide 8-9 TE Modes in Rectangular Waveguide 8-10 Propagation Velocities 8-11 Cavity Resonators 8-11.1 Resonant Frequency 8-11.2 Quality Factor Chapter 8 Summary Concepts Important Terms Mathematical and Physical Models Problems Section 8-1: Wave Reflection and Transmission at Normal Incidence Sections 8-2 and 8-3: Snell’s Laws and Fiber Optics Sections 8-4 and 8-5: Reflection and Transmission at ObliqueIncidence Sections 8-6 to 8-11: Waveguides and Resonators 9 Radiation and Antennas 9-1 The Hertzian Dipole 9-1.1 Far-Field Approximation 9-1.2 Power Density 9-2 Antenna Radiation Characteristics 9-2.1 Antenna Pattern 9-2.2 Beam Dimensions 9-2.3 Antenna Directivity 9-2.4 Antenna Gain 9-2.5 Radiation Resistance 9-3 Half-Wave Dipole Antenna 9-3.1 Directivity of λ/2 Dipole 9-3.2 Radiation Resistance of λ/2 Dipole 9-3.3 Quarter-Wave Monopole Antenna 9-4 Dipole of Arbitrary Length 9-5 Effective Area of a Receiving TB 17: Health Risks of EM Fields 9-6 Friis Transmission Formula 9-7 Radiation by Large-Aperture Antennas 9-8 Rectangular Aperture with Uniform Aperture Distribution 9-8.1 Beamwidth 9-8.2 Directivity and Effective Area 9-9 Antenna Arrays 9-10 N-Element Array with Uniform Phase Distribution 9-11 Electronic Scanning of Arrays 9-11.1 Uniform-Amplitude Excitation 9-11.2 Array Feeding Chapter 9 Summary Concepts Important Terms Mathematical and Physical Models Problems Sections 9-1 and 9-2: Hertizan Dipole and Antenna Radiation Characteristics Sections 9-3 and 9-4: Dipole Antennas Sections 9-5 and 9-6: Effective Area and Friis Formula Sections 9-7 and 9-8: Radiation by Apertures Sections 9-9 through 9-11: Antenna Arrays 10 Satellite Communication Systems and Radar Sensors 10-1 Satellite Communication Systems 10-2 Satellite Transponders 10-3 Communication-Link Power Budget 10-4 Antenna Beams 10-5 Radar Sensors 10-5.1 Basic Operation of a Radar System 10-5.2 Unambiguous Range 10-5.3 Range and Angular Resolutions 10-6 Target Detection 10-7 Doppler Radar 10-8 Monopulse Radar Chapter 10 Summary Concepts Mathematical and Physical Models Important Terms Problems Sections 10-1 to 10-4: Satellite Communication Systems Sections 10-5 to 10-8: Radar Sensors A: Symbols, Quantities, and Units B: Material Constants of Some Common Materials B-1 Relative Permittivity Of Common Materials B-2 Conductivity Of Some Common Materials B-3 Relative Permeability Of Some Common Materials C: Mathematical Formulas Trigonometric Relations Approximations for Small Quantities D: Answers to Selected Problems Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Bibliography Electromagnetics Antennas and Radiowave Propagation Optical Engineering Microwave Engineering Index 3-dB A B C D E F G H I J K L M N O P Q R S T U V W X Z Useful Information Fundamental Physical Constants Fundamental SI Units Multiple & Submultiple Prefixes Gradient, Divergence, Curl, & Laplacian Operators Cartesian (Rectangular) Coordinates (X, Y, Z) Cylindrical Coordinates ( R , Φ , Z ) Spherical Coordinates ( R , Θ , Φ ) Some Useful Vector Identities