دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [7 ed.]
نویسندگان: John D. Anderson Jr.
سری:
ISBN (شابک) : 1266076441, 9781266076442
ناشر: McGraw Hill
سال نشر: 2023
تعداد صفحات: 1168
[1169]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 207 Mb
در صورت تبدیل فایل کتاب Fundamentals of Aerodynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی آیرودینامیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش جدید مبانی آیرودینامیک
طبق سنت نسخههای قبلی است: برای دانشآموزان است که خوانده
شوند، درک شوند و لذت ببرند. آگاهانه به سبکی واضح، غیر رسمی و
مستقیم نوشته شده است تا با خواننده صحبت کند و علاقه آنها را به
رشته چالش برانگیز و در عین حال زیبای آیرودینامیک جلب کند.
ویرایش جدید مبانی آئرودینامیک همچنین
در McGraw Hill Connect موجود است که دارای SmartBook 2.0، یک
بانک سوالات سرپرستی، Proctorio و موارد دیگر است!
The new edition of Fundamentals of
Aerodynamics follows in the same tradition as the
previous editions: it is for students―to be read, understood,
and enjoyed. It is consciously written in a clear, informal,
and direct style to talk to the reader and gain their interest
in the challenging and yet beautiful discipline of
aerodynamics.
The new edition of Fundamentals of
Aerodynamics is also available in McGraw Hill
Connect, featuring SmartBook 2.0, a curated question bank,
Proctorio, and more!
Cover Title Page Copyright Page About the Authors Contents Preface to the Seventh Edition Acknowledgments PART 1 Fundamental Principles Chapter 1 Aerodynamics: Some Introductory Thoughts 1.1 Importance of Aerodynamics: Historical Examples 1.2 Aerodynamics: Classification and Practical Objectives 1.3 Road Map for This Chapter 1.4 Some Fundamental Aerodynamic Variables 1.4.1 Units 1.5 Aerodynamic Forces and Moments 1.6 Center of Pressure 1.7 Dimensional Analysis: The Buckingham Pi Theorem 1.8 Flow Similarity 1.9 Fluid Statics: Buoyancy Force 1.10 Types of Flow 1.10.1 Continuum Versus Free Molecule Flow 1.10.2 Inviscid Versus Viscous Flow 1.10.3 Incompressible Versus Compressible Flows 1.10.4 Mach Number Regimes 1.11 Viscous Flow: Introduction to Boundary Layers 1.12 Applied Aerodynamics: The Aerodynamic Coefficients—Their Magnitudes and Variations 1.13 Historical Note: The Illusive Center of Pressure 1.14 Historical Note: Aerodynamic Coefficients 1.15 Summary 1.16 Integrated Work Challenge: Forward-Facing Axial Aerodynamic Force on an Airfoil—Can It Happen and, If So, How? 1.17 Problems Chapter 2 Aerodynamics: Some Fundamental Principles and Equations 2.1 Introduction and Road Map 2.2 Review of Vector Relations 2.2.1 Some Vector Algebra 2.2.2 Typical Orthogonal Coordinate Systems 2.2.3 Scalar and Vector Fields 2.2.4 Scalar and Vector Products 2.2.5 Gradient of a Scalar Field 2.2.6 Divergence of a Vector Field 2.2.7 Curl of a Vector Field 2.2.8 Line Integrals 2.2.9 Surface Integrals 2.2.10 Volume Integrals 2.2.11 Relations Between Line, Surface, and Volume Integrals 2.2.12 Summary 2.3 Models of the Fluid: Control Volumes and Fluid Elements 2.3.1 Finite Control Volume Approach 2.3.2 Infinitesimal Fluid Element Approach 2.3.3 Molecular Approach 2.3.4 Physical Meaning of the Divergence of Velocity 2.3.5 Specification of the Flow Field 2.4 Continuity Equation 2.5 Momentum Equation 2.6 An Application of the Momentum Equation: Drag of a Two-Dimensional Body 2.6.1 Comment 2.7 Energy Equation 2.8 Interim Summary 2.9 Substantial Derivative 2.10 Fundamental Equations in Terms of the Substantial Derivative 2.11 Pathlines, Streamlines, and Streaklines of a Flow 2.12 Angular Velocity, Vorticity, and Strain 2.13 Circulation 2.14 Stream Function 2.15 Velocity Potential 2.16 Relationship Between the Stream Function and Velocity Potential 2.17 How Do We Solve the Equations? 2.17.1 Theoretical (Analytical) Solutions 2.17.2 Numerical Solutions—Computational Fluid Dynamics (CFD) 2.17.3 The Bigger Picture 2.18 Summary 2.19 Problems PART 2 Inviscid, Incompressible Flow Chapter 3 Fundamentals of Inviscid, Incompressible Flow 3.1 Introduction and Road Map 3.2 Bernoulli’s Equation 3.3 Incompressible Flow in a Duct: The Venturi and Low-Speed Wind Tunnel 3.4 Pitot Tube: Measurement of Airspeed 3.5 Pressure Coefficient 3.6 Condition on Velocity for Incompressible Flow 3.7 Governing Equation for Irrotational, Incompressible Flow: Laplace’s Equation 3.7.1 Infinity Boundary Conditions 3.7.2 Wall Boundary Conditions 3.8 Interim Summary 3.9 Uniform Flow: Our First Elementary Flow 3.10 Source Flow: Our Second Elementary Flow 3.11 Combination of a Uniform Flow with a Source and Sink 3.12 Doublet Flow: Our Third Elementary Flow 3.13 Nonlifting Flow over a Circular Cylinder 3.14 Vortex Flow: Our Fourth Elementary Flow 3.15 Lifting Flow over a Cylinder 3.16 The Kutta-Joukowski Theorem and the Generation of Lift 3.17 Nonlifting Flows over Arbitrary Bodies: The Numerical Source Panel Method 3.18 Applied Aerodynamics: The Flow over a Circular Cylinder—The Real Case 3.19 Historical Note: Bernoulli and Euler—The Origins of Theoretical Fluid Dynamics 3.20 Historical Note: d’Alembert and His Paradox 3.21 Summary 3.22 Integrated Work Challenge: Relation Between Aerodynamic Drag and the Loss of Total Pressure in the Flow field 3.23 Integrated Work Challenge: Conceptual Design of a Subsonic Wind Tunnel 3.24 Problems Chapter 4 Incompressible Flow over Airfoils 4.1 Introduction 4.2 Airfoil Nomenclature 4.3 Airfoil Characteristics 4.4 Philosophy of Theoretical Solutions for Low-Speed Flow over Airfoils: The Vortex Sheet 4.5 The Kutta Condition 4.5.1 Without Friction Could We Have Lift? 4.6 Kelvin’s Circulation Theorem and the Starting Vortex 4.7 Classical Thin Airfoil Theory: The Symmetric Airfoil 4.8 The Cambered Airfoil 4.9 The Aerodynamic Center: Additional Considerations 4.10 Lifting Flows over Arbitrary Bodies: The Vortex Panel Numerical Method 4.11 Modern Low-Speed Airfoils 4.12 Viscous Flow: Airfoil Drag 4.12.1 Estimating Skin-Friction Drag: Laminar Flow 4.12.2 Estimating Skin-Friction Drag: Turbulent Flow 4.12.3 Transition 4.12.4 Flow Separation 4.12.5 Comment 4.13 Applied Aerodynamics: The Flow over an Airfoil—The Real Case 4.14 Historical Note: Early Airplane Design and the Role of Airfoil Thickness 4.15 Historical Note: Kutta, Joukowski, and the Circulation Theory of Lift 4.16 Summary 4.17 Integrated Work Challenge: Wall Effects on Measurements Made in Subsonic Wind Tunnels 4.18 Problems Chapter 5 Incompressible Flow over Finite Wings 5.1 Introduction: Downwash and Induced Drag 5.2 The Vortex Filament, the Biot-Savart Law, and Helmholtz’s Theorems 5.3 Prandtl’s Classical Lifting-Line Theory 5.3.1 Elliptical Lift Distribution 5.3.2 General Lift Distribution 5.3.3 Effect of Aspect Ratio 5.3.4 Physical Significance 5.4 A Numerical Nonlinear Lifting-Line Method 5.5 The Lifting-Surface Theory and the Vortex Lattice Numerical Method 5.6 Applied Aerodynamics: The Delta Wing 5.7 Historical Note: Lanchester and Prandtl—The Early Development of Finite-Wing Theory 5.8 Historical Note: Prandtl—The Person 5.9 Summary 5.10 Problems Chapter 6 Three-Dimensional Incompressible Flow 6.1 Introduction 6.2 Three-Dimensional Source 6.3 Three-Dimensional Doublet 6.4 Flow over a Sphere 6.4.1 Comment on the Three-Dimensional Relieving Effect 6.5 General Three-Dimensional Flows: Panel Techniques 6.6 Applied Aerodynamics: The Flow over a Sphere—The Real Case 6.7 Applied Aerodynamics: Airplane Lift and Drag 6.7.1 Airplane Lift 6.7.2 Airplane Drag 6.7.3 Application of Computational Fluid Dynamics for the Calculation of Lift and Drag 6.8 Summary 6.9 Problems PART 3 Inviscid, Compressible Flow Chapter 7 Compressible Flow: Some Preliminary Aspects 7.1 Introduction 7.2 A Brief Review of Thermodynamics 7.2.1 Perfect Gas 7.2.2 Internal Energy and Enthalpy 7.2.3 First Law of Thermodynamics 7.2.4 Entropy and the Second Law of Thermodynamics 7.2.5 Isentropic Relations 7.3 Definition of Compressibility 7.4 Governing Equations for Inviscid, Compressible Flow 7.5 Definition of Total (Stagnation) Conditions 7.6 Some Aspects of Supersonic Flow: Shock Waves 7.7 Summary 7.8 Problems Chapter 8 Normal Shock Waves and Related Topics 8.1 Introduction 8.2 The Basic Normal Shock Equations 8.3 Speed of Sound 8.3.1 Comments 8.4 Special Forms of the Energy Equation 8.5 When Is a Flow Compressible? 8.6 Calculation of Normal Shock-Wave Properties 8.6.1 Comment on the Use of Tables to Solve Compressible Flow Problems 8.7 Measurement of Velocity in a Compressible Flow 8.7.1 Subsonic Compressible Flow 8.7.2 Supersonic Flow 8.8 Summary 8.9 Problems Chapter 9 Oblique Shock and Expansion Waves 9.1 Introduction 9.2 Oblique Shock Relations 9.3 Supersonic Flow over Wedges and Cones 9.3.1 A Comment on Supersonic Lift and Drag Coefficients 9.4 Shock Interactions and Reflections 9.5 Detached Shock Wave in Front of a Blunt Body 9.5.1 Comment on the Flow Field Behind a Curved Shock Wave: Entropy Gradients and Vorticity 9.6 Prandtl-Meyer Expansion Waves 9.7 Shock-Expansion Theory: Applications to Supersonic Airfoils 9.8 A Comment on Lift and Drag Coefficients 9.9 The X-15 and Its Wedge Tail 9.10 VISCOUS FLOW: Shock-Wave/ Boundary-Layer Interaction 9.11 Historical Note: Ernst Mach—A Biographical Sketch 9.12 Summary 9.13 Integrated Work Challenge: Relation Between Supersonic Wave Drag and Entropy Increase—Is There a Relation? 9.14 Integrated Work Challenge: The Sonic Boom 9.15 Problems Chapter 10 Compressible Flow Through Nozzles, Diffusers, and Wind Tunnels 10.1 Introduction 10.2 Governing Equations for Quasi-One-Dimensional Flow 10.3 Nozzle Flows 10.3.1 More on Mass Flow 10.4 Diffusers 10.5 Supersonic Wind Tunnels 10.6 Viscous Flow: Shock-Wave/Boundary-Layer Interaction Inside Nozzles 10.7 Summary 10.8 Integrated Work Challenge: Conceptual Design of a Supersonic Wind Tunnel 10.9 Problems Chapter 11 Subsonic Compressible Flow over Airfoils: Linear Theory 11.1 Introduction 11.2 The Velocity Potential Equation 11.3 The Linearized Velocity Potential Equation 11.4 Prandtl-Glauert Compressibility Correction 11.5 Improved Compressibility Corrections 11.6 Critical Mach Number 11.6.1 A Comment on the Location of Minimum Pressure (Maximum Velocity) 11.7 Drag-Divergence Mach Number: The Sound Barrier 11.8 The Area Rule 11.9 The Supercritical Airfoil 11.10 CFD Applications: Transonic Airfoils and Wings 11.11 Applied Aerodynamics: The Blended Wing Body 11.12 Historical Note: High-Speed Airfoils—Early Research and Development 11.13 Historical Note: The Origin of the Swept-Wing Concept 11.14 Historical Note: Richard T. Whitcomb—Architect of the Area Rule and the Supercritical Wing 11.15 Summary 11.16 Integrated Work Challenge: Transonic Testing by the Wing-Flow Method 11.17 Problems Chapter 12 Linearized Supersonic Flow 12.1 Introduction 12.2 Derivation of the Linearized Supersonic Pressure Coefficient Formula 12.3 Application to Supersonic Airfoils 12.4 Viscous Flow: Supersonic Airfoil Drag 12.5 Summary 12.6 Problems Chapter 13 Introduction to Numerical Techniques for Nonlinear Supersonic Flow 13.1 Introduction: Philosophy of Computational Fluid Dynamics 13.2 Elements of the Method of Characteristics 13.2.1 Internal Points 13.2.2 Wall Points 13.3 Supersonic Nozzle Design 13.4 Elements of Finite-Difference Methods 13.4.1 Predictor Step 13.4.2 Corrector Step 13.5 The Time-Dependent Technique: Application to Supersonic Blunt Bodies 13.5.1 Predictor Step 13.5.2 Corrector Step 13.6 Flow over Cones 13.6.1 Physical Aspects of Conical Flow 13.6.2 Quantitative Formulation 13.6.3 Numerical Procedure 13.6.4 Physical Aspects of Supersonic Flow over Cones 13.7 Summary 13.8 Problem Chapter 14 Elements of Hypersonic Flow 14.1 Introduction 14.2 Qualitative Aspects of Hypersonic Flow 14.3 Newtonian Theory 14.4 The Lift and Drag of Wings at Hypersonic Speeds: Newtonian Results for a Flat Plate at Angle of Attack 14.4.1 Accuracy Considerations 14.5 Hypersonic Shock-Wave Relations and Another Look at Newtonian Theory 14.6 Mach Number Independence 14.7 Hypersonics and Computational Fluid Dynamics 14.8 Hypersonic Viscous Flow: Aerodynamic Heating 14.8.1 Aerodynamic Heating and Hypersonic Flow—The Connection 14.8.2 Blunt Versus Slender Bodies in Hypersonic Flow 14.8.3 Aerodynamic Heating to a Blunt Body 14.9 Applied Hypersonic Aerodynamics: Hypersonic Waveriders 14.9.1 Viscous-Optimized Waveriders 14.10 Summary 14.11 Problems PART 4 Viscous Flow Chapter 15 Introduction to the Fundamental Principles and Equations of Viscous Flow 15.1 Introduction 15.2 Qualitative Aspects of Viscous Flow 15.3 Viscosity and Thermal Conduction 15.4 The Navier-Stokes Equations 15.5 The Viscous Flow Energy Equation 15.6 Similarity Parameters 15.7 Solutions of Viscous Flows: A Preliminary Discussion 15.8 Summary 15.9 Problems Chapter 16 A Special Case: Couette Flow 16.1 Introduction 16.2 Couette Flow: General Discussion 16.3 Incompressible (Constant Property) Couette Flow 16.3.1 Negligible Viscous Dissipation 16.3.2 Equal Wall Temperatures 16.3.3 Adiabatic Wall Conditions (Adiabatic Wall Temperature) 16.3.4 Recovery Factor 16.3.5 Reynolds Analogy 16.3.6 Interim Summary 16.4 Compressible Couette Flow 16.4.1 Shooting Method 16.4.2 Time-Dependent Finite-Difference Method 16.4.3 Results for Compressible Couette Flow 16.4.4 Some Analytical Considerations 16.5 Summary Chapter 17 Introduction to Boundary Layers 17.1 Introduction 17.2 Boundary-Layer Properties 17.3 The Boundary-Layer Equations 17.4 How Do We Solve the Boundary-Layer Equations? 17.5 Summary Chapter 18 Laminar Boundary Layers 18.1 Introduction 18.2 Incompressible Flow over a Flat Plate: The Blasius Solution 18.3 Compressible Flow over a Flat Plate 18.3.1 A Comment on Drag Variation with Velocity 18.4 The Reference Temperature Method 18.4.1 Recent Advances: The Meador-Smart Reference Temperature Method 18.5 Stagnation Point Aerodynamic Heating 18.6 Boundary Layers over Arbitrary Bodies: Finite-Difference Solution 18.6.1 Finite-Difference Method 18.7 Summary 18.8 Problems Chapter 19 Turbulent Boundary Layers 19.1 Introduction 19.2 Results for Turbulent Boundary Layers on a Flat Plate 19.2.1 Reference Temperature Method for Turbulent Flow 19.2.2 The Meador-Smart Reference Temperature Method for Turbulent Flow 19.2.3 Prediction of Airfoil Drag 19.3 Turbulence Modeling 19.3.1 The Baldwin-Lomax Model 19.4 Final Comments 19.5 Summary 19.6 Problems Chapter 20 Navier-Stokes Solutions: Some Examples 20.1 Introduction 20.2 The Approach 20.3 Examples of Some Solutions 20.3.1 Flow over a Rearward-Facing Step 20.3.2 Flow over an Airfoil 20.3.3 Flow over a Complete Airplane 20.3.4 Shock-Wave/Boundary-Layer Interaction 20.3.5 Flow over an Airfoil with a Protuberance 20.4 The Issue of Accuracy for the Prediction of Skin Friction Drag 20.5 Summary Appendix A Isentropic Flow Properties Appendix B Normal Shock Properties Appendix C Prandtl-Meyer Function and Mach Angle Appendix D Standard Atmosphere, SI Units Appendix E Standard Atmosphere, English Engineering Units References Index