دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Toshio Fuchigami, Mahito Atobe, Shinsuke Inagi سری: ISBN (شابک) : 9781118653173, 2014017644 ناشر: Wiley سال نشر: 2015 تعداد صفحات: [241] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی و کاربردهای الکتروشیمیایی آلی: سنتز ، مواد ، دستگاه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی یک مرور کلی در دسترس از زمینه وسیع الکتروشیمی آلی است که مبانی و کاربردهای الکتروشیمی آلی معاصر را پوشش می دهد. کتاب با مقدمهای بر جنبههای اساسی انتقال الکترون الکترود و روشهای اندازهگیری الکتروشیمیایی مولکولهای آلی آغاز میشود. سپس به بحث در مورد الکتروسنتز آلی مولکول ها و ماکرومولکول ها می پردازد، از جمله اطلاعات تجربی دقیق برای سنتز الکتروشیمیایی ترکیبات آلی و پلیمرهای رسانا. فصلهای بعدی روششناسی جدید برای سنتز الکتروشیمیایی آلی، برای مثال الکترولیز در مایعات یونی، کاربرد در دستگاههای الکترونیکی آلی مانند سلولهای خورشیدی و LED، و نمونههایی از فرآیندهای الکترود آلی تجاریسازی شده را برجسته میکنند. ضمیمه ها اطلاعات تکمیلی مفیدی از جمله نمونه های تجربی الکتروسنتز آلی، و جداول داده های فیزیکی (پتانسیل ردوکس حلال های آلی مختلف و ترکیبات آلی و خواص فیزیکی حلال های آلی مختلف) را ارائه می دهند.
This textbook is an accessible overview of the broad field of organic electrochemistry, covering the fundamentals and applications of contemporary organic electrochemistry. The book begins with an introduction to the fundamental aspects of electrode electron transfer and methods for the electrochemical measurement of organic molecules. It then goes on to discuss organic electrosynthesis of molecules and macromolecules, including detailed experimental information for the electrochemical synthesis of organic compounds and conducting polymers. Later chapters highlight new methodology for organic electrochemical synthesis, for example electrolysis in ionic liquids, the application to organic electronic devices such as solar cells and LEDs, and examples of commercialized organic electrode processes. Appendices present useful supplementary information including experimental examples of organic electrosynthesis, and tables of physical data (redox potentials of various organic solvents and organic compounds and physical properties of various organic solvents).
Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices Contents About the Authors Preface Introduction 1. Fundamental Principles of Organic Electrochemistry: Fundamental Aspects of Electrochemistry Dealing with Organic Molecules 1.1 FORMATION OF ELECTRICAL DOUBLE LAYER 1.2 ELECTRODE POTENTIALS (REDOX POTENTIALS) 1.3 ACTIVATION ENERGY AND OVERPOTENTIAL 1.4 CURRENTS CONTROLLED BY ELECTRON TRANSFER AND MASS TRANSPORT References 2. Method for Study of Organic Electrochemistry: Electrochemical Measurements of Organic Molecules 2.1 WORKING ELECTRODES 2.2 REFERENCE ELECTRODES 2.3 AUXILIARY ELECTRODES 2.4 SOLVENTS AND SUPPORTING ELECTROLYTES 2.5 CELLS AND POWER SOURCES 2.6 STEADY-STATE AND NON-STEADY-STATES POLARIZATION CURVES 2.7 POTENTIALS IN ELECTROCHEMICAL MEASUREMENTS 2.8 UTILIZATION OF VOLTAMMETRY FOR THE STUDY OF ORGANIC ELECTROSYNTHESIS 2.8.1 Voltammetric Analysis for Selective Electrosynthesis 2.8.2 Clarification of the Reaction Mechanism 2.8.3 Voltammetry for Selection of Mediator 2.8.4 Voltammetry for Selection of Electrode Material References 3. Methods for Organic Electrosynthesis 3.1 SELECTION OF ELECTROLYTIC CELLS 3.2 CONSTANT CURRENT ELECTROLYSIS AND CONSTANT POTENTIAL ELECTROLYSIS 3.3 DIRECT ELECTROLYSIS AND INDIRECT ELECTROLYSIS 3.4 ELECTRODE MATERIALS AND REFERENCE ELECTRODES 3.5 ELECTROLYTIC SOLVENTS AND SUPPORTING ELECTROLYTES 3.6 STIRRING 3.7 TRACKING OF REACTANT AND PRODUCT 3.8 WORK-UP, ISOLATION AND DETERMINATION OF PRODUCTS 3.9 CURRENT EFFICIENCY AND EFFECT OF THE POWER UNIT References 4. Organic Electrode Reactions 4.1 GENERAL CHARACTERISTICS OF ELECTRODE REACTIONS 4.2 MECHANISM OF ORGANIC ELECTRODE REACTIONS 4.3 CHARACTERISTICS OF ORGANIC ELECTROLYTIC REACTIONS 4.3.1 Umpolung 4.3.2 Selectivity 4.3.2.1 Chemoselectivity 4.3.2.2 Reaction Pathway Selectivity 4.3.2.3 Regioselectivity 4.3.2.4 Stereoselectivity 4.3.2.5 Selectivity Depending on Electrode Materials 4.4 MOLECULAR ORBITALS AND ELECTRONS RELATED TO ELECTRON TRANSFER 4.5 ELECTROAUXILIARIES 4.5.1 Electroauxiliaries Based on Molecular Orbital Interactions 4.5.2 Electroauxiliaries Based on Readily Electron-Transferable Functional Groups 4.5.3 Electroauxiliaries Based on Intermolecular Coordination Effects 4.5.4 Electroauxiliaries Based on Intramolecular Coordination Effects 4.6 REACTION PATTERN OF ORGANIC ELECTRODE REACTIONS 4.6.1 Transformation Type of Functional Group 4.6.2 Addition Type 4.6.3 Insertion Type 4.6.4 Substitution Type 4.6.5 Substitutive Exchange Type 4.6.6 Elimination Type 4.6.7 Dimerization Type 4.6.8 Crossed Dimerization 4.6.9 Cyclization Type 4.6.10 Polymorphism Formation Type 4.6.11 Polymerization Type 4.6.12 Cleavage Type 4.6.13 Metalation Type 4.6.14 Asymmetric Synthesis Type 4.7 ELECTROCHEMICALLY GENERATED REACTIVE SPECIES 4.7.1 Carbon Species 4.7.1.1 Anodically Generated Carbon Species 4.7.1.2 Cathodically Generated Carbon Species 4.7.2 Heteroatom Species 4.7.2.1 Nitrogen Species 4.7.2.2 Oxygen Species 4.7.2.3 Calcogeno (Sulfur, Selenium, Tellurium) Species 4.7.2.4 Halogen Species 4.7.2.5 14-Family and 15-Family Element Species References 5. Organic Electrosynthesis 5.1 ELECTROCATALYSIS 5.1.1 Classification and Kinds of Mediators 5.1.2 Organic Electrolytic Reactions Using Mediators 5.1.2.1 Electrosynthesis Using Multivalent Metal Ion Mediators 5.1.2.2 Electrosynthesis Using Halogen Mediators 5.1.2.3 Electrosynthesis Using Triarylamine Mediators 5.1.2.4 Electrosynthesis Using Multi-Mediatory Systems 5.1.2.5 Electrosynthesis Using Hypervalent Compounds as Mediators 5.1.2.6 Electrosynthesis Using Transition Metal Complex Mediators 5.1.2.7 Electrosynthesis Using Mediator Immobilzed on Solid 5.2 ELECTROGENERATED ACIDS AND BASES 5.2.1 Electrogenerated Bases 5.2.2 Electrogenerated Acids 5.3 ELECTROCHEMICAL ASYMMETRIC SYNTHESIS 5.4 MODIFIED ELECTRODES 5.4.1 Electrodes Modified with Adsorbants 5.4.2 Foreign Metal Adatom Modified Electrodes 5.4.3 Chemically Modified Electrodes 5.4.4 Polymer-Modified (Coated) Electrodes 5.5 PAIRED ELECTROSYNTHESIS 5.6 REACTIVE ELECTRODES 5.7 ELECTROCHEMICAL FLUORINATION 5.7.1 Electrochemical Fluorination of Aromatic Rings 5.7.2 Electrochemical Fluorination of Olefins 5.7.3 Benzylic Electrochemical Fluorination 5.7.4 Electrochemical Fluorination of Sulfides 5.7.5 Electrochemical Fluorination of Heterocyclic Compounds 5.7.6 Electrochemical Fluorination of Heterocyclic Compounds with PhS Group as Electroauxiliary 5.7.7 Electrochemical Fluorination Using Inorganic Fluoride Salts 5.8 ELECTROCHEMICAL POLYMERIZATION 5.8.1 Electro-oxidative Polymerization of Aromatic Monomers 5.8.2 Electrochemical Polymerization 5.8.3 Conditions for Electrochemical Polymerization 5.8.4 Electrochemical Doping 5.8.5 Electro-reductive Polymerization of Aromatic Monomers 5.8.6 Applications of Conducting Polymers 5.8.7 Electrochemical Synthesis of Polysilanes 5.8.8 Chain Polymerization Initiated with Electrogenerated Reactive Species References 6. New Methodology of Organic Electrochemical Synthesis 6.1 SPE ELECTROLYSIS AND ITS APPLICATIONS 6.1.1 Principle of SPE Electrolysis 6.1.2 SPE Electrolysis with Cogeneration (Chemicals Production Using Fuel Cell Reactions) 6.2 ELECTROLYTIC SYSTEMS USING SOLID BASES AND ACIDS 6.3 SOLID-SUPPORTED MEDIATORS 6.4 BIPHASIC ELECTROLYTIC SYSTEMS 6.4.1 Emulsion Electrolysis 6.4.2 Suspension Electrolysis 6.4.3 Electrolysis Using Phase-Transfer Catalysis 6.4.4 Thermomorphic Biphasic Electrochemical Reaction System 6.5 CATION POOL METHOD 6.6 TEMPLATE-DIRECTED METHODS 6.7 ELECTROLYSIS IN SUPERCRITICAL FLUIDS 6.8 ELECTROLYSIS IN IONIC LIQUIDS 6.8.1 Structures of Ionic Liquids 6.8.2 Hydrophilicity and Hydrophobicity of Ionic Liquids 6.8.3 Polarity of Ionic Liquids 6.8.4 Electrochemical Properties of Ionic Liquids 6.8.5 Voltammetry in Ionic Liquids 6.8.6 Organic Electrochemical Reactions in Ionic Liquids 6.8.6.1 Organic Electrosynthesis 6.8.6.2 Electrochemical Fluorination 6.8.6.3 Electropolymerization 6.8.6.4 Others 6.9 THIN-LAYER ELECTROLYTIC CELLS 6.10 ELECTROCHEMICAL MICROFLOW SYSTEMS 6.11 ELECTROLYSIS UNDER ULTRASONICATION 6.12 ELECTROSYNTHESIS USING SPECIFIC ELECTRODE MATERIALS 6.12.1 Electrochemical Synthesis Using Hydrophobic Electrodes 6.12.1.1 Hydrophobic Composite-Plated Electrodes 6.12.1.2 PTFE-Fibre-Coated Electrodes 6.12.2 Electrolytic Reactions Using Diamond Electrodes 6.12.2.1 Electrochemical Features and Application to Highly Sensitive Electroanalysis 6.12.2.2 Application to Organic Electrosynthesis 6.12.2.3 Application to Inorganic Electrosynthesis 6.13 PHOTOELECTROLYSIS AND PHOTOCATALYSIS 6.13.1 Photoelectrolysis 6.13.2 Photocatalysts 6.14 ELECTROCHEMICAL POLYMER REACTIONS References 7. Related Fields of Organic Electrochemistry 7.1 APPLICATION IN ORGANIC ELECTRONIC DEVICES 7.1.1 Organic Electroluminescence 7.1.2 Organic Photovoltaic Cells 7.1.3 Dye-sensitized Solar Cells 7.1.4 Organic Transistors 7.1.5 Electrochromic Devices 7.1.6 Conducting Polymer-based Capacitors 7.2 ELECTROCHEMICAL CONVERSION OF BIOMASS TO VALUABLE MATERIALS 7.3 APPLICATION TO C1 CHEMISTRY 7.4 ENVIRONMENTAL CLEANUP References 8. Examples of Commercialized Organic Electrode Processes 8.1 AVENUE TO INDUSTRIALIZATION 8.2 EXAMPLES 8.2.1 Electrosynthesis of Adiponitrile 8.2.2 Electrosynthesis of Aromatic Aldehydes 8.2.3 Paired Electrosynthesis of Phthalide and t-Butylbenzaldehyde 8.2.4 Electrochemical Perfluorination 8.2.5 Other Examples 8.2.5.1 3,6-Dichloropicolic Acid 8.2.5.2 β-Lactam Derivative 8.2.5.3 Cysteine 8.2.5.4 Tetramethylammonium Hydroxide 8.2.5.5 Other Examples References Appendix A: Examples of Organic Electrosynthesis A.1 ELECTROCHEMICAL FLUORINATION A.2 ELECTROSYNTHESIS USING A HYDROPHOBIC ELECTRODE A.3 NATURAL PRODUCT SYNTHESIS USING ANODIC OXIDATION A.4 KOLBE ELECTROLYSIS A.5 INDIRECT ELECTROSYNTHESIS USING A MEDIATOR A.6 ELECTROSYNTHESIS OF CONDUCTING POLYMERS REFERENCES Appendix B. Tables of Physical Data Index End User License Agreement