ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fundamental Planetary Science, Updated Edition: Physics, Chemistry and Habitability

دانلود کتاب علوم بنیادی سیاره ای، نسخه به روز شده: فیزیک، شیمی و زیست پذیری

Fundamental Planetary Science, Updated Edition: Physics, Chemistry and Habitability

مشخصات کتاب

Fundamental Planetary Science, Updated Edition: Physics, Chemistry and Habitability

ویرایش: Updated edition 
نویسندگان:   
سری:  
ISBN (شابک) : 1108411983, 9781108411981 
ناشر: Cambridge University Press 
سال نشر: 2019 
تعداد صفحات: 651 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 102 مگابایت 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Fundamental Planetary Science, Updated Edition: Physics, Chemistry and Habitability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب علوم بنیادی سیاره ای، نسخه به روز شده: فیزیک، شیمی و زیست پذیری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب علوم بنیادی سیاره ای، نسخه به روز شده: فیزیک، شیمی و زیست پذیری

این کتاب درسی جذاب، مقدمه‌ای کمی بر علم منظومه شمسی و سیستم‌های سیاره‌ای برای دانشجویان پیشرفته در مقطع کارشناسی، طیف گسترده‌ای از فرآیندهای فیزیکی، شیمیایی و زمین‌شناسی را توضیح می‌دهد که بر حرکات و ویژگی‌های سیارات حاکم است. نویسندگان مروری بر دانش کنونی ما ارائه می‌کنند و برخی از سؤالات بی‌پاسخ را که در خط مقدم پژوهش در علم سیاره‌شناسی و اختر زیست‌شناسی امروز قرار دارند، مورد بحث قرار می‌دهند. این نسخه به روز شده حاوی آخرین داده ها، مراجع جدید و تصاویر سیاره ای و فصلی بازنویسی شده گسترده در مورد تحقیقات فعلی در مورد سیارات فراخورشیدی است. متن با مقدمه‌ای بر ویژگی‌های اساسی موجودات زنده و رابطه‌ای که حیات با سیاره میزبان خود دارد، به پایان می‌رسد. این کتاب درسی با بیش از 200 تمرین برای کمک به دانش آموزان در یادگیری نحوه به کارگیری مفاهیم تحت پوشش، برای دوره های یک ترم یا دو چهارم برای دانشجویان مقطع کارشناسی ایده آل است.


توضیحاتی درمورد کتاب به خارجی

A quantitative introduction to the Solar System and planetary systems science for advanced undergraduate students, this engaging textbook explains the wide variety of physical, chemical and geological processes that govern the motions and properties of planets. The authors provide an overview of our current knowledge and discuss some of the unanswered questions at the forefront of research in planetary science and astrobiology today. This updated edition contains the latest data, new references and planetary images and an extensively rewritten chapter on current research on exoplanets. The text concludes with an introduction to the fundamental properties of living organisms and the relationship that life has to its host planet. With more than 200 exercises to help students learn how to apply the concepts covered, this textbook is ideal for a one-semester or two-quarter course for undergraduate students.



فهرست مطالب

Contents
Tables
Preface
1 Introduction
	1.1 A Brief History of the Planetary Sciences
	1.2 Inventory of the Solar System
		1.2.1 Giant Planets
		1.2.2 Terrestrial Planets
		1.2.3 Minor Planets and Comets
		1.2.4 Satellite and Ring Systems
		1.2.5 Tabulations
		1.2.6 Heliosphere
	1.3 What is a Planet?
	1.4 Planetary Properties
		1.4.1 Orbit
		1.4.2 Mass
		1.4.3 Size
		1.4.4 Rotation
		1.4.5 Shape
		1.4.6 Temperature
		1.4.7 Magnetic Field
		1.4.8 Surface Composition
		1.4.9 Surface Structure
		1.4.10 Atmosphere
		1.4.11 Interior
	1.5 Formation of the Solar System
	Key Concepts
	Further Reading
	Problems
2 Dynamics
	2.1 The Two-Body Problem
		2.1.1 Kepler’s Laws of Planetary Motion
		2.1.2 Newton’s Laws of Motion and Gravity
		2.1.3 Reduction of the Two-Body Problem to the One-Body Problem
		2.1.4 * Generalization of Kepler’s Laws
		2.1.5 Orbital Elements
		2.1.6 Bound and Unbound Orbits
	2.2 The Three-Body Problem
		2.2.1 Jacobi’s Constant and Lagrangian Points
		2.2.2 Horseshoe and Tadpole Orbits
		2.2.3 Hill Sphere
	2.3 Perturbations and Resonances
		2.3.1 Resonant Forcing
		2.3.2 Mean Motion Resonances
		2.3.3 Secular Resonances
		2.3.4 Resonances in the Asteroid Belt
		2.3.5 Regular and Chaotic Motion
	2.4 Stability of the Solar System
		2.4.1 Orbits of the Eight Planets
		2.4.2 Survival Lifetimes of Small Bodies
	2.5* Dynamics of Spherical Bodies
		2.5.1 Moment of Inertia
		2.5.2 Gravitational Interactions
	2.6 Orbits about an Oblate Planet
		2.6.1* Gravity Field
		2.6.2 Precession of Particle Orbits
		2.6.3 Torques on an Oblate Planet
	2.7 Tides
		2.7.1 The Tidal Force and Tidal Bulges
		2.7.2 Tidal Torque
		2.7.3 Tidal Heating
		2.8 Dissipative Forces and the Orbits of Small Bodies
			2.8.1 Radiation Pressure (Micrometer Grains)
			2.8.2 Poynting–Robertson Drag (Small Macroscopic Particles)
			2.8.3 Yarkovsky Effect (1–104-Meter Objects)
			2.8.4 Corpuscular Drag (Submicrometer Dust)
			2.8.5 Gas Drag
	2.9 Orbits about a Mass-Losing Star
	Key Concepts
	Further Reading
	Problems
3 Physics and Astrophysics
	3.1 Thermodynamics
		3.1.1 Laws of Thermodynamics
		3.1.2 Enthalpy
		3.1.3 Entropy
		3.1.4 Gibbs Free Energy
		3.1.5 Material Properties: Phase Changes
	3.2 Barometric Law and Hydrostatic Equilibrium
	3.3 Stellar Properties and Lifetimes
		3.3.1 Virial Theorem
		3.3.2 Luminosity
		3.3.3 Size
		3.3.4 Sizes and Densities of Massive Planets
	3.4 Nucleosynthesis
		3.4.1 Primordial Nucleosynthesis
		3.4.2 Stellar Nucleosynthesis
		3.4.3 Radioactive Decay
	Key Concepts
	Further Reading
	Problems
4 Solar Heating and Energy Transport
	4.1 Energy Balance and Temperature
		4.1.1 Thermal (Blackbody) Radiation
		4.1.2 Albedo
		4.1.3 Temperature
	4.2 Energy Transport
	4.3 Conduction
	4.4 Convection
		4.4.1 Adiabatic Gradient
	4.5 Radiation
		4.5.1 Photons and Energy Levels in Atoms
		4.5.2 Spectroscopy
		4.5.3 Radiative Energy Transport
		4.5.4 Radiative Equilibrium
	4.6 Greenhouse Effect
		4.6.1 Quantitative Results
		4.6.2* Derivations
	Key Concepts
	Further Reading
	Problems
5 Planetary Atmospheres
	5.1 Thermal Structure
		5.1.1 Sources and Transport of Energy
		5.1.2 Observed Thermal Profiles
	5.2 Atmospheric Composition
	5.3 Clouds
	5.4 Meteorology
		5.4.1 Coriolis Effect
		5.4.2 Winds Forced by Solar Heating
	5.5 Photochemistry
		5.5.1 Photolysis and Recombination
		5.5.2 Photoionization: Ionospheres
	5.6 Molecular and Eddy Diffusion
		5.6.1 Eddy Diffusion
		5.6.2 Molecular Diffusion
	5.7 Atmospheric Escape
		5.7.1 Thermal (Jeans) Escape
		5.7.2 Nonthermal Escape
		5.7.3 Hydrodynamic Escape and Impact Erosion
	5.8 History of Secondary Atmospheres
		5.8.1 Formation
		5.8.2 Climate Evolution
		5.8.3 Summary of Secondary Atmospheres
	Key Concepts
	Further Reading
	Problems
6 Surfaces and Interiors
	6.1 Mineralogy and Petrology
		6.1.1 Minerals
		6.1.2 Rocks
		6.1.3 Material under High Temperature and Pressure
		6.1.4 Cooling of a Magma
	6.2 Planetary Interiors
		6.2.1 Interior Structure of the Earth
		6.2.2 Shape and Gravity Field
		6.2.3 Internal Heat: Sources, Losses and Transport
	6.3 Surface Morphology
		6.3.1 Tectonics
		6.3.2 Volcanism
		6.3.3 Atmospheric Effects on Landscape
	6.4 Impact Cratering
		6.4.1 Crater Morphology
		6.4.2 Crater Formation
		6.4.3 Impact Modification by Atmospheres
		6.4.4 Spatial Density of Craters
		6.4.5 Impacts on Earth
	Key Concepts
	Further Reading
	Problems
7 Sun, Solar Wind and Magnetic Fields
	7.1 The Sun
	7.2 The Interplanetary Medium
		7.2.1 Solar Wind
		7.2.2 The Parker Model
		7.2.3 Space Weather
		7.2.4 Solar Wind–Planet Interactions
	7.3 Planetary Magnetospheres
		7.3.1 Earth’s Magnetosphere
		7.3.2 Aurora
		7.3.3 Magnetospheric Plasmas
		7.3.4 Radio Emissions
	7.4 Generation of Magnetic Fields
		7.4.1 Variability of Earth’s Magnetic Field
		7.4.2 Magnetic Dynamo Theory
	Key Concepts
	Further Reading
	Problems
8 Giant Planets
	8.1 Jupiter
		8.1.1 Atmosphere
		8.1.2 Impacts on Jupiter
		8.1.3 Interior Structure
		8.1.4 Magnetic Field
	8.2 Saturn
		8.2.1 Atmosphere
		8.2.2 Interior Structure
		8.2.3 Magnetic Field
	8.3 Uranus and Neptune
		8.3.1 Atmospheres
		8.3.2 Interiors
		8.3.3 Magnetic Fields
	Key Concepts
	Further Reading
	Problems
9 Terrestrial Planets and the Moon
	9.1 The Moon
		9.1.1 Surface
		9.1.2 Atmosphere
		9.1.3 Interior
		9.1.4 Magnetic Field
	9.2 Mercury
		9.2.1 Surface
		9.2.2 Atmosphere
		9.2.3 Interior
		9.2.4 Magnetic Field
	9.3 Venus
		9.3.1 Surface
		9.3.2 Atmosphere
		9.3.3 Interior
	9.4 Mars
		9.4.1 Global Appearance
		9.4.2 Interior
		9.4.3 Atmosphere
		9.4.4 Frost, Ice and Glaciers
		9.4.5 Water on Mars
		9.4.6 Geology at Rover Sites
		9.4.7 Magnetic Field
	Key Concepts
	Further Reading
	Problems
10 Planetary Satellites
	10.1 Moons of Mars: Phobos and Deimos
	10.2 Satellites of Jupiter
		10.2.1 Io
		10.2.2 Europa
		10.2.3 Ganymede and Callisto
		10.2.4 Jupiter’s Small Moons
	10.3 Satellites of Saturn
		10.3.1 Titan
		10.3.2 Midsized Saturnian Moons
		10.3.3 Enceladus
		10.3.4 Small Regular Satellites of Saturn
		10.3.5 Saturn’s Irregular Moons
	10.4 Satellites of Uranus
	10.5 Satellites of Neptune
	Key Concepts
	Further Reading
	Problems
11 Meteorites
	11.1 Classification
	11.2 Source Regions
	11.3 Fall Phenomena
	11.4 Chemical and Isotopic Fractionation
		11.4.1 Chemical Separation
		11.4.2 Isotopic Fractionation
	11.5 Main Components of Chondrites
	11.6 Radiometric Dating
		11.6.1 Decay Rates
		11.6.2 Dating Rocks
		11.6.3 Extinct-Nuclide Dating
		11.6.4 Cosmic-Ray Exposure Ages
	11.7 Meteorite Clues to Planet Formation
		11.7.1 Meteorites from Differentiated Bodies
		11.7.2 Primitive Meteorites
		11.7.3 Presolar Grains
	Key Concepts
	Further Reading
	Problems
12 Minor Planets and Comets
	12.1 Nomenclature
	12.2 Orbits
		12.2.1 Asteroids
		12.2.2 Trans-Neptunian Objects, Centaurs
		12.2.3 Oort Cloud
		12.2.4 Nongravitational Forces
	12.3 Size Distribution and Collisions
		12.3.1 Size Distribution
		12.3.2 Collisions and Families
		12.3.3 Collisions and Rubble Piles
		12.3.4 Binary and Multiple Systems
		12.3.5 Comet-Splitting Events
		12.3.6 Mass and Density
		12.3.7 Rotation
		12.3.8 Interplanetary Dust
	12.4 Bulk Composition and Taxonomy
		12.4.1 Asteroid Taxonomy
		12.4.2 Taxometric Spatial Distribution
		12.4.3 Trans-Neptunian Object Spectra
	12.5 Individual Minor Planets
		12.5.1 Near-Earth Asteroids
		12.5.2 Main Belt Asteroids
		12.5.3 Trans-Neptunian Objects
		12.6 Shape and Structure of Comet Nuclei
	12.7 Comas and Tails of Comets
		12.7.1 Brightness
		12.7.2 Ultimate Fate of Coma Gas
		12.7.3 Dust Entrainment
		12.7.4 Morphology and Composition of Dust Tails
		12.7.5 Ion Tails
		12.7.6 Comet Composition
		12.8 Temporal Evolution of the Population of Asteroids and Comets
	Key Concepts
	Further Reading
	Problems
13 Planetary Rings
	13.1 Tidal Forces and Roche’s Limit
	13.2 Flattening and Spreading of Rings
	13.3 Observations
		13.3.1 Jupiter’s Rings
		13.3.2 Saturn’s Rings
		13.3.3 Uranus’s Rings
		13.3.4 Neptune’s Rings
	13.4 Ring–Moon Interactions
		13.4.1 Resonances
		13.4.2 Spiral Waves
		13.4.3 Shepherding
	13.5 Origins of Planetary Rings
	Key Concepts
	Further Reading
	Problems
14 Extrasolar Planets
	14.1 Detecting Extrasolar Planets
		14.1.1 Timing Pulsars and Pulsating Stars
		14.1.2 Radial Velocity
		14.1.3 Astrometry
		14.1.4 Transit Photometry
		14.1.5 Transit Timing Variations
		14.1.6 Microlensing
		14.1.7 Imaging
		14.1.8 Other Techniques
		14.1.9 Planets in Multiple Star Systems
		14.1.10 Exoplanet Characterization
	14.2 Exoplanet Nomenclature
	14.3 Observations of Extrasolar Planets
		14.3.1 Pulsar Planets
		14.3.2 Radial Velocity Detections
		14.3.3 Transiting Planets
		14.3.4 Rossiter–McLaughlin Effect
		14.3.5 NASA’s Kepler Mission
		14.3.6 Small Nearby Exoplanets
		14.3.7 Planets Orbiting Pulsating Stars
		14.3.8 Microlensing Detections
		14.3.9 Images and Spectra of Exoplanets
		14.3.10 Planets in Multiple Star Systems
	14.4 Mass–Radius Relationship
		14.4.1 Theory
		14.4.2 Observations
	14.5 Exoplanet Demographics
		14.5.1 Radial Velocity Surveys
		14.5.2 Kepler Planet Candidates
		14.5.3 Microlensing and Imaging
	14.6 Conclusions
	Key Concepts
	Further Reading
	Problems
15 Planet Formation
	15.1 Solar System Constraints
	15.2 Star Formation: A Brief Overview
		15.2.1 Molecular Cloud Cores
		15.2.2 Collapse of Molecular Cloud Cores
		15.2.3 Young Stars and Circumstellar Disks
	15.3 Evolution of the Protoplanetary Disk
		15.3.1 Infall Stage
		15.3.2 Disk Dynamical Evolution
		15.3.3 Chemistry in the Disk
		15.3.4 Clearing Stage
	15.4 Growth of Solid Bodies
		15.4.1 Planetesimal Formation
		15.4.2 From Planetesimals to Planetary Embryos
	15.5 Formation of the Terrestrial Planets
		15.5.1 Dynamics of the Final Stages of Planetary Accumulation
		15.5.2 Accretional Heating and Planetary Differentiation
		15.5.3 Accumulation (and Loss) of Atmospheric Volatiles
	15.6 Formation of the Giant Planets
	15.7 Planetary Migration
		15.7.1 Torques from Protoplanetary Disks
		15.7.2 Scattering of Planetesimals
	15.8 Small Bodies Orbiting the Sun
		15.8.1 Asteroid Belt
		15.8.2 Comet Reservoirs
	15.9 Planetary Rotation
	15.10 Satellites of Planets and of Minor Planets
		15.10.1 Giant Planet Satellites
		15.10.2 Formation of the Moon
		15.10.3 Satellites of Small Bodies
	15.11 Exoplanet Formation Models
	15.12 Confronting Theory with Observations
		15.12.1 Solar System’s Dynamical State
		15.12.2 Composition of Planetary Bodies
		15.12.3 Extrasolar Planets
		15.12.4 Successes, Shortcomings and Predictions
	Key Concepts
	Further Reading
	Problems
16 Planets and Life
	16.1 Drake Equation
	16.2 What Is Life?
	16.3 Biological Thermodynamics
	16.4 Why Carbon and Water?
	16.5 Circumstellar Habitable Zones
	16.6 Planetary Requirements for Life
		16.6.1 Biogeochemical Cycles
		16.6.2 Gravitational and Magnetic Fields
		16.6.3 Can Moonless Planets Host Life?
		16.6.4 Giant Planets and Life
	16.7 Impacts and Other Natural Disasters
		16.7.1 K–T Event
		16.7.2 Frequency of Impacts
		16.7.3 Volcanos and Earthquakes
	16.8 How Life Affects Planets
	16.9 Origin of Life
		16.9.1 Synthesis of Organic Molecules
		16.9.2 The Phylogenetic Tree and Last Universal Common Ancestor
		16.9.3 Young Earth and Early Life
	16.10 Darwinian Evolution
		16.10.1 Sex, Gene Pools, and Inheritance
		16.10.2 Development of Complex Life
		16.10.3 Intelligence and Technology
		16.14 Are We Alone?
	16.11 Mass Extinctions
	16.12 Panspermia
	16.13 Detecting Extraterrestrial Life
		16.13.1 Signs of (Past) Life on Mars?
		16.13.2 Search for Extra terrestrial Intelligence
	Key Concepts
	Further Reading
	Problems
Appendix A: Symbols Used
Appendix B: Acronyms Used
Appendix C: Units and Constants
Appendix D: Periodic Table of Elements
Appendix E: Solar System Tables
Appendix F: Interplanetary Spacecraft
Appendix G: Recent Advances in Solar System Studies
References
Index




نظرات کاربران