دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Updated edition
نویسندگان: Jack J. Lissauer
سری:
ISBN (شابک) : 1108411983, 9781108411981
ناشر: Cambridge University Press
سال نشر: 2019
تعداد صفحات: 651
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 102 مگابایت
در صورت تبدیل فایل کتاب Fundamental Planetary Science, Updated Edition: Physics, Chemistry and Habitability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علوم بنیادی سیاره ای، نسخه به روز شده: فیزیک، شیمی و زیست پذیری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی جذاب، مقدمهای کمی بر علم منظومه شمسی و سیستمهای سیارهای برای دانشجویان پیشرفته در مقطع کارشناسی، طیف گستردهای از فرآیندهای فیزیکی، شیمیایی و زمینشناسی را توضیح میدهد که بر حرکات و ویژگیهای سیارات حاکم است. نویسندگان مروری بر دانش کنونی ما ارائه میکنند و برخی از سؤالات بیپاسخ را که در خط مقدم پژوهش در علم سیارهشناسی و اختر زیستشناسی امروز قرار دارند، مورد بحث قرار میدهند. این نسخه به روز شده حاوی آخرین داده ها، مراجع جدید و تصاویر سیاره ای و فصلی بازنویسی شده گسترده در مورد تحقیقات فعلی در مورد سیارات فراخورشیدی است. متن با مقدمهای بر ویژگیهای اساسی موجودات زنده و رابطهای که حیات با سیاره میزبان خود دارد، به پایان میرسد. این کتاب درسی با بیش از 200 تمرین برای کمک به دانش آموزان در یادگیری نحوه به کارگیری مفاهیم تحت پوشش، برای دوره های یک ترم یا دو چهارم برای دانشجویان مقطع کارشناسی ایده آل است.
A quantitative introduction to the Solar System and planetary systems science for advanced undergraduate students, this engaging textbook explains the wide variety of physical, chemical and geological processes that govern the motions and properties of planets. The authors provide an overview of our current knowledge and discuss some of the unanswered questions at the forefront of research in planetary science and astrobiology today. This updated edition contains the latest data, new references and planetary images and an extensively rewritten chapter on current research on exoplanets. The text concludes with an introduction to the fundamental properties of living organisms and the relationship that life has to its host planet. With more than 200 exercises to help students learn how to apply the concepts covered, this textbook is ideal for a one-semester or two-quarter course for undergraduate students.
Contents Tables Preface 1 Introduction 1.1 A Brief History of the Planetary Sciences 1.2 Inventory of the Solar System 1.2.1 Giant Planets 1.2.2 Terrestrial Planets 1.2.3 Minor Planets and Comets 1.2.4 Satellite and Ring Systems 1.2.5 Tabulations 1.2.6 Heliosphere 1.3 What is a Planet? 1.4 Planetary Properties 1.4.1 Orbit 1.4.2 Mass 1.4.3 Size 1.4.4 Rotation 1.4.5 Shape 1.4.6 Temperature 1.4.7 Magnetic Field 1.4.8 Surface Composition 1.4.9 Surface Structure 1.4.10 Atmosphere 1.4.11 Interior 1.5 Formation of the Solar System Key Concepts Further Reading Problems 2 Dynamics 2.1 The Two-Body Problem 2.1.1 Kepler’s Laws of Planetary Motion 2.1.2 Newton’s Laws of Motion and Gravity 2.1.3 Reduction of the Two-Body Problem to the One-Body Problem 2.1.4 * Generalization of Kepler’s Laws 2.1.5 Orbital Elements 2.1.6 Bound and Unbound Orbits 2.2 The Three-Body Problem 2.2.1 Jacobi’s Constant and Lagrangian Points 2.2.2 Horseshoe and Tadpole Orbits 2.2.3 Hill Sphere 2.3 Perturbations and Resonances 2.3.1 Resonant Forcing 2.3.2 Mean Motion Resonances 2.3.3 Secular Resonances 2.3.4 Resonances in the Asteroid Belt 2.3.5 Regular and Chaotic Motion 2.4 Stability of the Solar System 2.4.1 Orbits of the Eight Planets 2.4.2 Survival Lifetimes of Small Bodies 2.5* Dynamics of Spherical Bodies 2.5.1 Moment of Inertia 2.5.2 Gravitational Interactions 2.6 Orbits about an Oblate Planet 2.6.1* Gravity Field 2.6.2 Precession of Particle Orbits 2.6.3 Torques on an Oblate Planet 2.7 Tides 2.7.1 The Tidal Force and Tidal Bulges 2.7.2 Tidal Torque 2.7.3 Tidal Heating 2.8 Dissipative Forces and the Orbits of Small Bodies 2.8.1 Radiation Pressure (Micrometer Grains) 2.8.2 Poynting–Robertson Drag (Small Macroscopic Particles) 2.8.3 Yarkovsky Effect (1–104-Meter Objects) 2.8.4 Corpuscular Drag (Submicrometer Dust) 2.8.5 Gas Drag 2.9 Orbits about a Mass-Losing Star Key Concepts Further Reading Problems 3 Physics and Astrophysics 3.1 Thermodynamics 3.1.1 Laws of Thermodynamics 3.1.2 Enthalpy 3.1.3 Entropy 3.1.4 Gibbs Free Energy 3.1.5 Material Properties: Phase Changes 3.2 Barometric Law and Hydrostatic Equilibrium 3.3 Stellar Properties and Lifetimes 3.3.1 Virial Theorem 3.3.2 Luminosity 3.3.3 Size 3.3.4 Sizes and Densities of Massive Planets 3.4 Nucleosynthesis 3.4.1 Primordial Nucleosynthesis 3.4.2 Stellar Nucleosynthesis 3.4.3 Radioactive Decay Key Concepts Further Reading Problems 4 Solar Heating and Energy Transport 4.1 Energy Balance and Temperature 4.1.1 Thermal (Blackbody) Radiation 4.1.2 Albedo 4.1.3 Temperature 4.2 Energy Transport 4.3 Conduction 4.4 Convection 4.4.1 Adiabatic Gradient 4.5 Radiation 4.5.1 Photons and Energy Levels in Atoms 4.5.2 Spectroscopy 4.5.3 Radiative Energy Transport 4.5.4 Radiative Equilibrium 4.6 Greenhouse Effect 4.6.1 Quantitative Results 4.6.2* Derivations Key Concepts Further Reading Problems 5 Planetary Atmospheres 5.1 Thermal Structure 5.1.1 Sources and Transport of Energy 5.1.2 Observed Thermal Profiles 5.2 Atmospheric Composition 5.3 Clouds 5.4 Meteorology 5.4.1 Coriolis Effect 5.4.2 Winds Forced by Solar Heating 5.5 Photochemistry 5.5.1 Photolysis and Recombination 5.5.2 Photoionization: Ionospheres 5.6 Molecular and Eddy Diffusion 5.6.1 Eddy Diffusion 5.6.2 Molecular Diffusion 5.7 Atmospheric Escape 5.7.1 Thermal (Jeans) Escape 5.7.2 Nonthermal Escape 5.7.3 Hydrodynamic Escape and Impact Erosion 5.8 History of Secondary Atmospheres 5.8.1 Formation 5.8.2 Climate Evolution 5.8.3 Summary of Secondary Atmospheres Key Concepts Further Reading Problems 6 Surfaces and Interiors 6.1 Mineralogy and Petrology 6.1.1 Minerals 6.1.2 Rocks 6.1.3 Material under High Temperature and Pressure 6.1.4 Cooling of a Magma 6.2 Planetary Interiors 6.2.1 Interior Structure of the Earth 6.2.2 Shape and Gravity Field 6.2.3 Internal Heat: Sources, Losses and Transport 6.3 Surface Morphology 6.3.1 Tectonics 6.3.2 Volcanism 6.3.3 Atmospheric Effects on Landscape 6.4 Impact Cratering 6.4.1 Crater Morphology 6.4.2 Crater Formation 6.4.3 Impact Modification by Atmospheres 6.4.4 Spatial Density of Craters 6.4.5 Impacts on Earth Key Concepts Further Reading Problems 7 Sun, Solar Wind and Magnetic Fields 7.1 The Sun 7.2 The Interplanetary Medium 7.2.1 Solar Wind 7.2.2 The Parker Model 7.2.3 Space Weather 7.2.4 Solar Wind–Planet Interactions 7.3 Planetary Magnetospheres 7.3.1 Earth’s Magnetosphere 7.3.2 Aurora 7.3.3 Magnetospheric Plasmas 7.3.4 Radio Emissions 7.4 Generation of Magnetic Fields 7.4.1 Variability of Earth’s Magnetic Field 7.4.2 Magnetic Dynamo Theory Key Concepts Further Reading Problems 8 Giant Planets 8.1 Jupiter 8.1.1 Atmosphere 8.1.2 Impacts on Jupiter 8.1.3 Interior Structure 8.1.4 Magnetic Field 8.2 Saturn 8.2.1 Atmosphere 8.2.2 Interior Structure 8.2.3 Magnetic Field 8.3 Uranus and Neptune 8.3.1 Atmospheres 8.3.2 Interiors 8.3.3 Magnetic Fields Key Concepts Further Reading Problems 9 Terrestrial Planets and the Moon 9.1 The Moon 9.1.1 Surface 9.1.2 Atmosphere 9.1.3 Interior 9.1.4 Magnetic Field 9.2 Mercury 9.2.1 Surface 9.2.2 Atmosphere 9.2.3 Interior 9.2.4 Magnetic Field 9.3 Venus 9.3.1 Surface 9.3.2 Atmosphere 9.3.3 Interior 9.4 Mars 9.4.1 Global Appearance 9.4.2 Interior 9.4.3 Atmosphere 9.4.4 Frost, Ice and Glaciers 9.4.5 Water on Mars 9.4.6 Geology at Rover Sites 9.4.7 Magnetic Field Key Concepts Further Reading Problems 10 Planetary Satellites 10.1 Moons of Mars: Phobos and Deimos 10.2 Satellites of Jupiter 10.2.1 Io 10.2.2 Europa 10.2.3 Ganymede and Callisto 10.2.4 Jupiter’s Small Moons 10.3 Satellites of Saturn 10.3.1 Titan 10.3.2 Midsized Saturnian Moons 10.3.3 Enceladus 10.3.4 Small Regular Satellites of Saturn 10.3.5 Saturn’s Irregular Moons 10.4 Satellites of Uranus 10.5 Satellites of Neptune Key Concepts Further Reading Problems 11 Meteorites 11.1 Classification 11.2 Source Regions 11.3 Fall Phenomena 11.4 Chemical and Isotopic Fractionation 11.4.1 Chemical Separation 11.4.2 Isotopic Fractionation 11.5 Main Components of Chondrites 11.6 Radiometric Dating 11.6.1 Decay Rates 11.6.2 Dating Rocks 11.6.3 Extinct-Nuclide Dating 11.6.4 Cosmic-Ray Exposure Ages 11.7 Meteorite Clues to Planet Formation 11.7.1 Meteorites from Differentiated Bodies 11.7.2 Primitive Meteorites 11.7.3 Presolar Grains Key Concepts Further Reading Problems 12 Minor Planets and Comets 12.1 Nomenclature 12.2 Orbits 12.2.1 Asteroids 12.2.2 Trans-Neptunian Objects, Centaurs 12.2.3 Oort Cloud 12.2.4 Nongravitational Forces 12.3 Size Distribution and Collisions 12.3.1 Size Distribution 12.3.2 Collisions and Families 12.3.3 Collisions and Rubble Piles 12.3.4 Binary and Multiple Systems 12.3.5 Comet-Splitting Events 12.3.6 Mass and Density 12.3.7 Rotation 12.3.8 Interplanetary Dust 12.4 Bulk Composition and Taxonomy 12.4.1 Asteroid Taxonomy 12.4.2 Taxometric Spatial Distribution 12.4.3 Trans-Neptunian Object Spectra 12.5 Individual Minor Planets 12.5.1 Near-Earth Asteroids 12.5.2 Main Belt Asteroids 12.5.3 Trans-Neptunian Objects 12.6 Shape and Structure of Comet Nuclei 12.7 Comas and Tails of Comets 12.7.1 Brightness 12.7.2 Ultimate Fate of Coma Gas 12.7.3 Dust Entrainment 12.7.4 Morphology and Composition of Dust Tails 12.7.5 Ion Tails 12.7.6 Comet Composition 12.8 Temporal Evolution of the Population of Asteroids and Comets Key Concepts Further Reading Problems 13 Planetary Rings 13.1 Tidal Forces and Roche’s Limit 13.2 Flattening and Spreading of Rings 13.3 Observations 13.3.1 Jupiter’s Rings 13.3.2 Saturn’s Rings 13.3.3 Uranus’s Rings 13.3.4 Neptune’s Rings 13.4 Ring–Moon Interactions 13.4.1 Resonances 13.4.2 Spiral Waves 13.4.3 Shepherding 13.5 Origins of Planetary Rings Key Concepts Further Reading Problems 14 Extrasolar Planets 14.1 Detecting Extrasolar Planets 14.1.1 Timing Pulsars and Pulsating Stars 14.1.2 Radial Velocity 14.1.3 Astrometry 14.1.4 Transit Photometry 14.1.5 Transit Timing Variations 14.1.6 Microlensing 14.1.7 Imaging 14.1.8 Other Techniques 14.1.9 Planets in Multiple Star Systems 14.1.10 Exoplanet Characterization 14.2 Exoplanet Nomenclature 14.3 Observations of Extrasolar Planets 14.3.1 Pulsar Planets 14.3.2 Radial Velocity Detections 14.3.3 Transiting Planets 14.3.4 Rossiter–McLaughlin Effect 14.3.5 NASA’s Kepler Mission 14.3.6 Small Nearby Exoplanets 14.3.7 Planets Orbiting Pulsating Stars 14.3.8 Microlensing Detections 14.3.9 Images and Spectra of Exoplanets 14.3.10 Planets in Multiple Star Systems 14.4 Mass–Radius Relationship 14.4.1 Theory 14.4.2 Observations 14.5 Exoplanet Demographics 14.5.1 Radial Velocity Surveys 14.5.2 Kepler Planet Candidates 14.5.3 Microlensing and Imaging 14.6 Conclusions Key Concepts Further Reading Problems 15 Planet Formation 15.1 Solar System Constraints 15.2 Star Formation: A Brief Overview 15.2.1 Molecular Cloud Cores 15.2.2 Collapse of Molecular Cloud Cores 15.2.3 Young Stars and Circumstellar Disks 15.3 Evolution of the Protoplanetary Disk 15.3.1 Infall Stage 15.3.2 Disk Dynamical Evolution 15.3.3 Chemistry in the Disk 15.3.4 Clearing Stage 15.4 Growth of Solid Bodies 15.4.1 Planetesimal Formation 15.4.2 From Planetesimals to Planetary Embryos 15.5 Formation of the Terrestrial Planets 15.5.1 Dynamics of the Final Stages of Planetary Accumulation 15.5.2 Accretional Heating and Planetary Differentiation 15.5.3 Accumulation (and Loss) of Atmospheric Volatiles 15.6 Formation of the Giant Planets 15.7 Planetary Migration 15.7.1 Torques from Protoplanetary Disks 15.7.2 Scattering of Planetesimals 15.8 Small Bodies Orbiting the Sun 15.8.1 Asteroid Belt 15.8.2 Comet Reservoirs 15.9 Planetary Rotation 15.10 Satellites of Planets and of Minor Planets 15.10.1 Giant Planet Satellites 15.10.2 Formation of the Moon 15.10.3 Satellites of Small Bodies 15.11 Exoplanet Formation Models 15.12 Confronting Theory with Observations 15.12.1 Solar System’s Dynamical State 15.12.2 Composition of Planetary Bodies 15.12.3 Extrasolar Planets 15.12.4 Successes, Shortcomings and Predictions Key Concepts Further Reading Problems 16 Planets and Life 16.1 Drake Equation 16.2 What Is Life? 16.3 Biological Thermodynamics 16.4 Why Carbon and Water? 16.5 Circumstellar Habitable Zones 16.6 Planetary Requirements for Life 16.6.1 Biogeochemical Cycles 16.6.2 Gravitational and Magnetic Fields 16.6.3 Can Moonless Planets Host Life? 16.6.4 Giant Planets and Life 16.7 Impacts and Other Natural Disasters 16.7.1 K–T Event 16.7.2 Frequency of Impacts 16.7.3 Volcanos and Earthquakes 16.8 How Life Affects Planets 16.9 Origin of Life 16.9.1 Synthesis of Organic Molecules 16.9.2 The Phylogenetic Tree and Last Universal Common Ancestor 16.9.3 Young Earth and Early Life 16.10 Darwinian Evolution 16.10.1 Sex, Gene Pools, and Inheritance 16.10.2 Development of Complex Life 16.10.3 Intelligence and Technology 16.14 Are We Alone? 16.11 Mass Extinctions 16.12 Panspermia 16.13 Detecting Extraterrestrial Life 16.13.1 Signs of (Past) Life on Mars? 16.13.2 Search for Extra terrestrial Intelligence Key Concepts Further Reading Problems Appendix A: Symbols Used Appendix B: Acronyms Used Appendix C: Units and Constants Appendix D: Periodic Table of Elements Appendix E: Solar System Tables Appendix F: Interplanetary Spacecraft Appendix G: Recent Advances in Solar System Studies References Index