دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Abani K. Bhuyan
سری:
ISBN (شابک) : 9781032274850, 9781003293064
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 322
[323]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 78 Mb
در صورت تبدیل فایل کتاب Fundamental Concepts of Molecular Spectroscopy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مفاهیم اساسی طیف سنجی مولکولی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی کاربردی و منحصر به فرد، حوزه های اصلی طیف سنجی مولکولی را همانطور که یک معلم کلاسیک، از منظر تئوری و عمل تجربی توضیح می دهد، توضیح می دهد. نویسنده که از نظر دامنه جامع است، هر مفهوم را به دقت بررسی و توضیح میدهد و در کنار دانشآموز از طریق متن، آموزش و اشتقاقهایی که با دقت ساخته شده است قدم میزند تا از درک اصول اولیه قبل از نزدیک شدن به موضوعات سطح بالاتر اطمینان حاصل کند. نویسنده هر دو رزونانس الکتریکی و رزونانس مغناطیسی را در کتاب درسی گنجانده است.
This practical and unique textbook explains the core areas of molecular spectroscopy as a classical teacher would, from the perspective of both theory and experimental practice. Comprehensive in scope, the author carefully explores and explains each concept, walking side by side with the student through carefully constructed text, pedagogy, and derivations to ensure comprehension of the basics before approaching higher level topics. The author incorporates both electric resonance and magnetic resonance in the textbook.
Cover Half Title Title Page Copyright Page Table of Contents Preface About the Author 1 Electromagnetic Wave Nature of Light 1.1 Gauss’s Law of Electrostatics 1.2 Gauss’s Law of Magnetism 1.3 Faraday’s Law of Induced Electric Field 1.4 Ampere’s Law of Induced Magnetic Field 1.5 Maxwell’s Equations 1.6 Wave Equation 1.7 Homogeneous Traveling Plane Wave 1.8 Wave Packet Problems Bibliography 2 Postulates of Quantum Mechanics 2.1 Stern-Gerlach Experiment 2.2 Postulates of Quantum Mechanics 2.2.1 Postulate 1 2.2.2 Postulate 2 2.2.3 Postulate 3 2.2.4 Postulate 4 2.2.5 Postulate 5 2.2.6 Postulate 6 2.3 Perturbation Theory 2.3.1 Perturbation of a Nondegenerate System 2.3.2 Perturbation of a Degenerate State Problems Bibliography 3 Semiclassical Theory of Spectroscopic Transition 3.1 Two-Level System 3.2 System-Radiation Interaction 3.3 Time Development of Eigenstate Probabilities 3.4 Probability Expressions 3.5 Rabi Oscillations 3.6 Transition Probability and Absorption Coefficient 3.7 Limitations of the Theory 3.8 Collisional Line Broadening 3.9 Line Broadening From Excited State Lifetime 3.10 Spectral Line Shape and Line Width 3.10.1 Homogeneous Or Lorentzian Line Shape 3.10.2 Inhomogeneous Or Gaussian Line Shape 3.10.3 Doppler Interpretation of Inhomogeneous Line Shape Problems Further Reading 4 Hydrogen Atom Spectra 4.1 Free Hydrogen Atom 4.2 Eigenvalues, Quantum Numbers, Spectra, and Selection Rules 4.3 Hydrogen Atom in External Magnetic Field: Zeeman Effect and Spectral Multiplets 4.3.1 Magnetic Moment in External Magnetic Field 4.3.2 Larmor Precession 4.3.3 Eigenstate, Operator, and Eigenvalue in External Magnetic Field 4.4 Anomalous Zeeman Effect and Further Splitting of Spectra 4.4.1 Electron Spin and Spin Magnetic Moment 4.4.2 Lande -Factor 4.4.3 Spin-Orbit Coupling 4.4.4 Spin-Orbit Coupling Energy 4.4.5 Spectroscopic Notation 4.4.6 Fine Structure of Atomic Spectra 4.4.7 Splitting of Degeneracy: Anomalous Zeeman Effect 4.5 Zeeman Effect in Weak Magnetic Field 4.6 Zeeman Splitting Changeover From Weak to Strong Magnetic Field 4.7 Electron-Nuclear Hyperfine Interaction 4.8 Zeeman Splitting of Hyperfine Energy Levels 4.8.1 Zeeman Splitting of Hyperfine States in Weak Magnetic Field 4.8.2 Hyperfine States of Hydrogen Atom in Strong Magnetic Field 4.9 Stark Effect 4.9.1 Hydrogen Atom in External Electric Field 4.9.2 Effect On the Level 4.9.3 Effect On the Level Problems Bibliography 5 Molecular Eigenstates 5.1 Born-Oppenheimer Approximation 5.2 Solution of the Total Schrödinger Equation 5.3 States of Nuclear Motion 5.4 Adiabatic and Nonadiabatic Processes 5.5 Molecular Potential Energy States 5.5.1 One-Electron Hydrogen-Like Atom States 5.5.2 Molecular Electronic States Derived From Atom States 5.6 LCAO-MO 5.7 Molecular Eigenstates of H2+ 5.8 Molecular Eigenstates of H2 5.9 Singlet and Triplet Excited States of H2 5.10 Electric Dipole Transition in H2 5.11 Molecular Orbital Energy and Electronic Configuration 5.12 Molecular Orbitals of Heteronuclear Diatomic Molecule 5.13 Molecular Orbitals of Large Systems 5.13.1 LCAO-MO of Porphyrins 5.13.2 Free-Electron Orbitals of Porphyrins Problems Bibliography 6 Elementary Group Theory 6.1 Symmetry Operations 6.1.1 Rotation 6.1.2 Reflection 6.1.3 Improper Rotation 6.1.4 Inversion 6.2 Point Group 6.2.1 Properties of Point Groups 6.2.2 Representation of Symmetry Operators of a Group 6.3 Group Representations 6.4 Labels of Irreducible Representations 6.5 Reduction of Representations to Irreducible Representations 6.6 Direct Product of Irreducible Representations 6.7 Applications 6.7.1 Energy Eigenvalues of Molecular Orbitals 6.7.2 Removal of Energy Degeneracy By Perturbation 6.7.3 General Selection Rules for Electronic Transitions 6.7.4 Specific Transition Rules Problems Bibliography 7 Rotational Spectra 7.1 Rotational Spectra of Diatomic Molecules 7.1.1 Schrödinger Equation for Diatomic Rotation 7.1.2 Rotational Energy of Rigid Rotor 7.1.3 Rotational Energy of Non-Rigid Rotor 7.1.4 Stationary State Eigenfunctions and Rotational Transitions 7.1.5 Energy Levels and Representation of Pure Rotational Spectra 7.2 Rotational Spectra of Polyatomic Molecules 7.2.1 Rotational Inertia 7.2.2 Energy of Rigid Rotors 7.2.3 Wavefunctions of Symmetric Tops 7.2.4 Commutation of Rotational Angular Momentum Operators 7.2.5 Eigenvalues for Tops 7.2.6 Selection Rules for Polyatomic Rotational Transition Problems 8 Diatomic Vibrations, Energy, and Spectra 8.1 Classical Description of an Oscillator 8.2 Schrödinger Equation for Nuclear Vibration 8.3 Selection Rules for Vibrational Transitions 8.4 Rotational–Vibrational Combined Structure Problems 9 Polyatomic Vibrations and Spectra 9.1 A Simple Classical Model to Define a Normal Mode 9.2 Vibrational Energy From Classical Mechanics 9.3 Solution of Lagrange’s Equation 9.4 Vibrational Hamiltonian and Wavefunction 9.5 Symmetry of Normal Modes 9.6 Finding the Vibrational Frequencies 9.7 Activity of Normal Modes of Vibration 9.8 Secondary Band Manifold in Infrared Spectra 9.8.1 Overtone Band 9.8.2 Hot Band 9.8.3 Combination Band 9.8.4 Fermi Resonance Band 9.8.5 Vibrational Angular Momentum and Coriolis-Perturbed Band Structure 9.9 Rotational Band Structure in Vibrational Bands 9.10 Selection Rules for Vibrational Transition Problems 10 Raman Spectroscopy 10.1 Light Scattering 10.2 Frequencies of Rayleigh and Raman-Scattered Light 10.3 Limitation of the Classical Theory of Raman Scattering 10.4 Brillouin Scattering 10.5 Raman Tensor 10.5.1 Polarizability Tensor Ellipsoid 10.5.2 Nomenclature of the Polarizability Tensor 10.5.3 Anisotropy of Polarizability 10.5.4 Isotropic Average of Scattered Intensity 10.6 Semi-Classical Theory of Raman Scattering 10.6.1 Rotational Raman Spectra 10.6.2 Vibration-Rotation Raman Spectra 10.7 Raman Tensor and Vibrational Symmetry 10.8 Secondary Or Coupled Bands in Raman Spectra 10.9 Solution Phase Raman Scattering 10.10 Resonance Raman Scattering 10.11 Sundries and Outlook Problems 11 Electronic Spectra 11.1 Energy Term-Value Formulas for Molecular States 11.2 Dipole Transitions in the Electronic-Vibrational-Rotational Spectra 11.3 Electronic Transition Dipole With Nuclear Configurations 11.4 Franck-Condon Factor 11.5 Progression of Vibrational Absorption in an Electronic Band 11.6 Analysis of Vibrational Bands 11.7 Analysis Rotational Bands 11.8 Electron-Nuclear Rotational Coupling and Splitting of Rotational Energy Levels 11.8.1 Hund’s Cases 11.8.2 -Type Doubling 11.9 Selection Rules for Electronic Transitions in Diatomic Molecules 11.9.1 Symmetry-Based General Rules for Electronic Transitions 11.9.2 Selection Rules 11.9.3 Selection Rules Pertaining to Hund’s Coupling Cases 11.10 Perturbation Manifests in Vibronic Spectra 11.10.1 Rotational Perturbation and Kronig’s Selection Rules 11.10.2 Frequency Shift and Λ-Doubling in Rotational Perturbation 11.10.3 Vibrational Perturbation 11.10.4 Predissociation 11.10.5 Diffused Molecular Spectra 11.11 Stark Effect in Rotational Transitions: Observation and Selection Rules 11.12 Zeeman Effect On Rotational Energy Levels and Selection Rules 11.13 Magnetooptic Rotational Effect Problems 12 Vibrational and Rotational Coherence Spectroscopy 12.1 Ultrashort Time of Spectroscopy 12.2 Wave Packet 12.3 Coherence 12.3.1 Linear Superposition and Interference 12.3.2 Vibrational Coherence 12.3.3 Rotational Coherence 12.3.4 Coherence Decay 12.4 Wave Packet Oscillation 12.5 Frequency Spectrum of Time-Domain Coherence 12.6 Assignment of Vibrational Bands 12.7 Pure Rotational Coherence 12.8 Density Operator, Coherence, and Coherence Transfer 12.8.1 Homogeneous and Statistical Mixture of States of a System 12.8.2 Density Operator 12.8.3 Time Evolution of the Density Operator 12.8.4 Matrix Representation of the Unitary Transformation Superoperator 12.8.5 Matrix Representation of the Commutator Superoperator 12.8.6 Partial Density Matrix 12.8.7 Density Operator Expression Using Irreducible Tensor Operator 12.9 Density Matrix Treatment of an Optical Experiment Problems 13 Nuclear Magnetic Resonance Spectroscopy 13.1 Nuclear Spin of Different Elements 13.2 Excited-State Nuclear Spin 13.3 Nuclear Spin Angular Momentum and Magnetic Moment 13.4 Zeeman Splitting of Nuclear Energy Levels 13.5 Larmor Precession of Angular Momentum 13.6 Transition Torque Mechanics 13.7 Spin Population and NMR Transition 13.7.1 Static Field Dependence of Signal Intensity 13.7.2 Nuclear Receptivity 13.7.3 Macroscopic Magnetization 13.8 Bloch Equations and Relaxation Times 13.9 The Rotating Frame 13.10 Bloch Equations in the Rotating Frame 13.11 RF Pulse and Signal Generation 13.12 Origin of Chemical Shift: Local Shielding 13.13 Long-Range Shielding 13.13.1 Ring Current Effect, σr 13.13.2 Electric Field Effect, σe 13.13.3 Bond Magnetic Anisotropy, σm 13.13.4 Shielding By Hydrogen Bonding, σH 13.13.5 Hyperfine Shielding, σhfs 13.13.6 Shielding From Solvent Effect, σs 13.13.7 Chemical Shift Scale 13.14 Spin-Spin Coupling 13.15 Basic Theory of the Origin of Nuclear Spin Relaxation 13.16 Mechanism of Spin Relaxation 13.16.1 Shielding Anisotropy 13.16.2 Spin-Rotation Interaction 13.16.3 Scalar Interaction 13.16.4 Paramagnetic Effect 13.16.5 Dipole-Dipole Interaction 13.17 Dipolar Interaction and Cross-Relaxation 13.18 Effect of Dipolar Interaction On Nuclear Relaxation 13.19 Spin Cross-Relaxation: Solomon Equations 13.20 Nuclear Overhauser Effect (NOE) 13.20.1 Positive and Negative NOE 13.20.2 Direct and Indirect NOE Transfer 13.20.3 Rotating Frame Overhauser Effect 13.20.4 Transient NOE 13.21 Chemical Exchange 13.21.1 Effect of Chemical Exchange On Line Shape 13.21.2 One-Sided Chemical Reaction 13.22 Hahn Echo and Double Resonance 13.23 Echo Modulation and J-Spectroscopy 13.24 Heteronuclear J-Spectroscopy 13.25 Polarization Transfer (INEPT and Refocused INEPT) 13.26 Two-Dimensional -Resolved Spectroscopy 13.26.1 Absence of Coherence Transfer in 2D J-Spectroscopy 13.26.2 2D J-Spectroscopy in Strong Coupling Limit 13.27 Density Matrix Method in NMR 13.27.1 Outline of the Density Matrix Apparatus in NMR 13.27.2 Expression of Nuclear Spin Density Operators 13.27.3 Transformations of Product Operators 13.28 Homonuclear Correlation Spectroscopy (COSY) 13.29 Relayed Correlation Spectroscopy (Relay COSY) 13.30 Total Correlation Spectroscopy (TOCSY) 13.31 2D Nuclear Overhauser Enhancement Spectroscopy (NOESY) 13.32 Pure Exchange Spectroscopy (EXSY) 13.33 Phase Cycling, Spurious Signals, and Coherence Transfer 13.34 Coherence Transfer Pathways 13.35 Magnetic Field Gradient Pulse 13.36 Heteronuclear Correlation Spectroscopy 13.37 3D NMR 13.37.1 Dissection of a 3D Spectrum 13.37.2 NOESY-[1H-15N]HSQC 13.37.3 Triple-Resonance 3D Spectroscopy 13.38 Calculation of 3D Molecular Structure Problems Index