دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Pulak M. Pandey (editor), Sandeep Rathee (editor), Manu Srivastava (editor), Prashant K. Jain (editor) سری: ISBN (شابک) : 0367483815, 9780367483814 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 255 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Functionally Graded Materials (FGMs): Fabrication, Properties, Applications, and Advancements به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد درجه بندی شده عملکردی (FGMs): ساخت، ویژگی ها، برنامه ها و پیشرفت ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
علم و مطالعه مواد درجه بندی شده عملکردی (FGMs) در چند دهه اخیر محققان را به خود جلب کرده است. کاربرد آنها این قابلیت را دارد که قطعاتی با خواص بی همتا تولید کند که دستیابی به آنها از طریق مسیرهای معمولی مواد عملاً غیرممکن است. این کتاب به جنبه های مختلف FGM می پردازد و یک منبع داده مرتبط، با کیفیت بالا و جامع ارائه می دهد.
این کتاب روندها، طبقه بندی فرآیندها بر اساس مبانی مختلف، فرآیندهای فیزیکی درگیر، ساختار، ویژگی ها، کاربردها، مزایا و محدودیت ها را پوشش می دهد. روندهای نوظهور در این زمینه به تفصیل مورد بحث قرار می گیرند و پیشرفت ها به طور کامل بررسی و ارائه می شوند تا طیف کاربردهای FGM را گسترش دهند.
این کتاب مرجع برای محققان، محققین، دانشگاهیان، متخصصان صنعت، آزمایشگاههای دولتی، کتابخانهها و هر کسی که علاقهمند به حوزه مهندسی مواد است مورد توجه خواهد بود.
The science and study of functionally graded materials (FGMs) have intrigued researchers over the last few decades. Their application has the capability to produce parts with unmatched properties which are virtually impossible to obtain via conventional material routes. This book addresses various FGM aspects and provides a relevant, high-quality, and comprehensive data source.
The book covers trends, process classification on various bases, physical processes involved, structure, properties, applications, advantages, and limitations. Emerging trends in the field are discussed in detail and advancements are thoroughly reviewed and presented to broaden the spectrum of FGM applications.
This reference book will be of interest to scholars, researchers, academicians, industry practitioners, government labs, libraries, and anyone interested in the area of materials engineering.
Cover Half Title Title Page Copyright Page Table of Contents Preface Acknowledgments Editors List of Contributors Chapter 1 Functionally Graded Materials: An Introduction 1.1 Introduction 1.2 Functionally Graded Materials in Nature 1.3 Type of Functionally Graded Materials 1.4 Methods of Fabrication of Functionally Graded Materials 1.5 Areas of Application of Functionally Graded Materials 1.6 Research Efforts in Functionally Graded Materials 1.7 Summary Acknowledgments References Chapter 2 Advances in Fabrication Techniques of Functionally Graded Materials 2.1 Introduction 2.2 Classification of Functionally Graded Material Fabrication Techniques 2.3 Liquid Phase Processing Techniques 2.3.1 Centrifugal Force-Based Technique 2.3.1.1 Centrifugal Casting Technique 2.3.1.2 Centrifugal Slurry Pouring Technique 2.3.1.3 Centrifugal Pressurization Methods 2.3.2 Tape Casting 2.3.3 Infiltration Technique 2.3.4 Cast-Decant-Cast Technique 2.4 Vapor Phase Processing Techniques 2.4.1 Physical Vapor Deposition Techniques 2.4.1.1 Evaporation-Based PVD 2.4.1.2 Sputtering-Based PVD 2.4.1.3 Plasma Spray PVD 2.4.2 Chemical Vapor Deposition Techniques 2.5 Deposition Techniques 2.5.1 Thermal Spraying 2.5.2 Electrophoretic Deposition 2.6 Solid Phase Processing Techniques 2.6.1 Powder Metallurgy Techniques 2.6.1.1 Spark Plasma Sintering (SPS) 2.6.2 Friction Stir Processing (FSP) 2.7 Additive Manufacturing Processes 2.8 Challenges and Future Potential in Functionally Graded Materials Fabrication 2.9 Conclusions References Chapter 3 Liquid Phase Processing Techniques for Functionally Graded Materials 3.1 Introduction 3.2 Liquid State Processing of FGMs 3.2.1 Centrifugal Casting 3.2.1.1 Centrifugal Solid Particle System (CSPM) 3.2.1.2 Centrifugal in-Situ Method (CISM) 3.2.2 Centrifugal Slurry Pouring Method 3.2.3 Centrifugal Pressurized Method 3.2.3.1 Mixed Centrifugal Power Method (MCPM) 3.2.3.2 Centrifugal Sintered Casting Method (CSCM) 3.2.3.3 Reactive Centrifugal Casting Method (RCCM) 3.2.4 Slip Casting Method 3.2.5 Tape Casting Method 3.2.6 Method of Infiltration 3.2.7 Gel Casting 3.3 Conclusions References Chapter 4 Gaseous Phase Processing Techniques for Functionally Graded Materials 4.1 Introduction 4.1.1 Brief Background 4.1.2 Organization of Chapter 4.2 Current Status of Research 4.3 Processing Techniques 4.3.1 Thermal Spray Deposition 4.3.1.1 Atmospheric Plasma Spraying (APS) 4.3.1.2 High-Velocity Oxy-Fuel (HVOF) 4.3.1.3 Suspension Plasma Spraying (SPS) 4.3.1.4 Vacuum Plasma Spraying (VPS) 4.3.2 Physical Vapor Deposition 4.3.2.1 Electron Beam Physical Vapor Deposition (EB-PVD) 4.3.2.2 Pulsed Laser Deposition (PLD) 4.3.3 Chemical Vapor Deposition 4.3.3.1 Plasma-Enhanced/Assisted CVD 4.3.3.2 Metal-Organic CVD 4.4 Computational Modeling and Analysis 4.5 Applications 4.5.1 Functionally Graded Thermal Barrier Coatings 4.5.2 Functionally Graded Biomedical/Bioactive Coatings 4.5.3 Functionally Graded Coatings for Cutting Tools 4.6 Conclusions References Chapter 5 Fabrication of FGMs by Additive Manufacturing Techniques 5.1 Introduction 5.2 Design and Modeling for AM of FGMs 5.3 Methods for AM of FGMs 5.3.1 Directed Energy Deposition 5.3.2 Powder Bed Fusion 5.3.2.1 Selective Laser Melting and Selective Laser Sintering 5.3.2.2 Electron Beam Melting (EBM) 5.3.3 Material Extrusion Based 5.3.4 Stereolithography 5.3.5 Material Jetting 5.3.6 Hybrid AM 5.4 State-of-the-Art Material Systems 5.5 Challenges in AM of FGMs 5.6 Future Potential and Prospects 5.7 Conclusions References Chapter 6 Design and Fabrication of a Functionally Graded Model of Bone Using the Fused Filament Fabrication Process 6.1 Introduction 6.1.1 Additive Manufacturing for Functionally Graded Material 6.1.2 Biomedical Imaging 6.1.3 Segmentation of the Intended Body Part 6.1.4 Medical Modeling for Additive Manufacturing 6.2 Process of Fabricating Functionally Graded Material 6.2.1 Biomedical Data Acquisition 6.2.2 Medical Image Processing and Data Extraction from DICOM Images 6.2.3 Segmentation 6.2.4 Region Formation 6.2.5 Contour Formation 6.3 Toolpath Formation 6.4 Software and Hardware Integration 6.5 Application 6.6 Conclusions References Chapter 7 Recent Advancements in Analysis of FGM Structures and Future Scope 7.1 Introduction 7.2 Analysis of FGM Structure 7.2.1 Bending Studies 7.2.2 Vibration Studies 7.2.3 Buckling Studies 7.3 Discussion 7.4 Conclusion and Future Scope Acknowledgment References Chapter 8 Modeling and Analysis of Smart Functionally Graded Structures 8.1 Introduction 8.1.1 Functionally Graded Materials and Structures 8.1.2 Power Law 8.1.3 Exponential Law 8.1.4 Sigmoid Function 8.2 Smart Composite Materials 8.3 Smart Functionally Graded Structures 8.4 Active Constrained Layer Damping Treatment 8.5 Functionally Graded Material Properties 8.5.1 Material Parameters under Thermal Environment 8.6 ANSYS Model Development 8.7 Mathematical Model of the Smart Functionally Graded Plate 8.8 Results Discussion 8.8.1 Bending Analysis 8.8.2 Vibration Analysis 8.9 Conclusions References Chapter 9 Dynamic Analysis of a Porous Sandwich Functionally Graded Material Plate with Geometric Nonlinearity 9.1 Introduction 9.2 Porosity and Temperature Distribution 9.2.1 Porosity Models 9.2.2 Temperature Distribution 9.2.2.1 Uniform Temperature Distribution 9.2.2.2 Nonlinear Temperature Distribution 9.3 Material Properties and Constitutive Relation 9.4 Theoretical Formulation 9.4.1 Kinematics 9.4.2 Energy Equations 9.4.3 Governing Equations 9.4.3.1 Airy’s Function and Strain Compatibility Equation 9.4.3.2 Equilibrium Equations 9.5 Solution Procedure 9.5.1 Assumed Solutions and Transverse Load 9.5.2 Equivalent Axial Loads 9.6 Equation of Motion 9.6.1 Forced Vibration Analysis 9.6.2 Free Vibration Analysis 9.6.3 Static Analysis 9.6.4 Relation between Linear Frequency, Nonlinear Frequency, and Load Amplitude with Displacement 9.7 Validation and Convergence Study 9.7.1 Validation Study 9.7.2 Convergence Study 9.8 Results and Analysis 9.8.1 Effect of Span-to-Thickness Ratio 9.8.2 Effect of Aspect Ratio 9.8.3 Effect of Volume Fraction Exponent 9.8.4 Effect of Elastic Foundation Parameters 9.8.5 Effect of Porosity Coefficient 9.9 Conclusions References Chapter 10 Functionally Graded Materials: Applications and Future Challenges 10.1 Introduction 10.2 Applications for FGMs 10.2.1 Biomedical Applications 10.2.2 Aerospace Applications 10.2.3 Defense Applications 10.2.4 Energy Applications 10.2.5 Automobile Industry Applications 10.2.6 Marine Applications 10.2.7 Construction Applications 10.2.8 Opto-Electronics Applications 10.2.9 Machines/Equipment Applications 10.2.10 Sports Applications 10.2.11 Miscellaneous Applications 10.3 Future Trends 10.4 Summary and Concluding Remarks References Index