دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Hussain C.M., Ahamed B.M. (ed.) سری: Materials Horizons: From Nature to Nanomaterials ISBN (شابک) : 9789819930203 ناشر: Springer سال نشر: 2024 تعداد صفحات: 713 [714] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Functionalized Nanomaterials Based Supercapacitor: Design, Performance and Industrial Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ابرخازن مبتنی بر نانومواد کاربردی: طراحی، عملکرد و کاربردهای صنعتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب طرح کلی گسترده ای از \"ابر خازن های مبتنی بر نانومواد عامل دار\"، از جمله تحقیقات اکتشافی اساسی و صنعتی آنها را به تصویر می کشد. بخشهای ارائهشده گزارش کاملی از زمینه استاندارد فرضی ابرخازن مبتنی بر نانومواد عاملدار شده ساختارشان را به اجرا، تحقق و کاربرد بالقوهشان در اختیار خوانندگان قرار میدهد. این جدیدترین سیستم و نانومواد عامل دار برای آماده سازی، توسعه، ساخت، اعتبارسنجی و طراحی ابرخازن برای کاربردهای تجاری را پوشش می دهد. تا جایی که می دانیم، کتابی در این زمینه موجود نیست. دانشجویان کارشناسی ارشد و کارشناسی ارشد می توانند این کتاب را منبع خوبی از دانش و راهنمایی برای مطالعات خود بیابند. آنها می توانند این کتاب را بسیار به روز، آسان برای استفاده و قابل درک بیابند. این کتاب میتواند عطش یادگیری حسگرهای الکتروشیمیایی جدید و پیشرفته را در آنها کم کند. علاوه بر این، ویراستاران جلد پیشبینی میکنند که این کتاب برای دانشمندانی که روی مسائل اساسی پیرامون کاربردهای نانوتکنولوژی در حسگرهای الکتروشیمیایی کار میکنند، مورد توجه است. به دلیل ماهیت چند رشته ای این موضوع، این کتاب مخاطبان وسیعی از جمله شیمیدانان، دانشمندان مواد، داروسازان، زیست شناسان و مهندسان شیمی را جذب می کند که درگیر و علاقه مند به مرزهای آینده علوم و فناوری ابرخازن مبتنی بر نانومواد عامل دار هستند. در مجموع، این کتاب به عنوان یک کتاب مرجع برای محققان و دانشمندانی که به دنبال پیشرفت های جدید و پیشرفت در علوم و فناوری ابرخازن هستند، برنامه ریزی شده است.
This book portrays an extensive outline of “functionalized nanomaterials based supercapacitor”, including their fundamental as well as industrial-scale exploratory research. The contributed parts stretch the readers a complete report of the field of functionalized nanomaterials-based supercapacitor appropriate hypothetical standard of their structure to their execution, realization and potential application. It covers the latest system and functionalized nanomaterials for preparation, development, construction, validation and design of supercapacitor for commercial application. To best of our knowledge, there is no book available on the topic. Advanced undergraduate and graduate students can find this book a good source of knowledge and guidelines for their studies. They can find this book highly up to date, easy to use and understandable. This book is able to ease their thirst of learning of new and advanced electrochemical sensors. Moreover, the volume editors anticipate that this book is of significant interest to scientists working on the basic issues surrounding applications of nanotechnology in electrochemical sensors. Because of the multidisciplinary nature of this topic, this book attracts a broad audience including chemists, materials scientists, pharmacist, biologist and chemical engineers, who are involved and interested in the future frontiers of functionalized nanomaterials-based supercapacitor sciences and technology. Overall, this book is planned to be a reference book for researchers and scientists who are searching for new and advancement in supercapacitors sciences and technology.
Cover Materials Horizons: From Nature to Nanomaterials Functionalized Nanomaterials Based Supercapacitor: Design, Performance and Industrial Applications Copyright Contents Part I. Modern Perspective in Supercapacitor: Functionalized Nanomaterials (FNMs) 1. Historical Perspective of Nanotechnology and Functionalized Nanomaterials 1. Origin of Nanoscience and Nanotechnology 2. Development of Nanotechnology Over the Years 3. Types of Nanomaterials 3.1 Morphology 3.2 Dimensionality 3.3 Composition 4. Synthesis of Nanomaterials 4.1 Top-Down Method 4.2 Bottom-Up Method 5. Functionalized Nanomaterials 5.1 Methods of Surface Functionalization References 2. An Introductory View About Supercapacitors 1. Introduction 2. Energy Storage Devices 2.1 Battery 2.2 Capacitor 2.3 Supercapacitor 3. Application and Fundamentals of Supercapacitor 3.1 Energy Storage in Supercapacitors 3.2 Application of Supercapacitors 4. Types of Supercapacitor 4.1 Classification on the Basis of Energy Storage Mechanism 4.2 Symmetric & Asymmetric Supercapacitors 4.3 Classification of Supercapacitors on the Basis of Electrode Material 4.4 Nanocomposite-Based Electrode Materials 5. Separators for Supercapacitors 5.1 Separator Membrane Materials 5.2 Bio-based Separator Membranes 6. Substrates for Supercapacitors 6.1 Metal Substrates 6.2 Carbon Paper and Carbon Nanofoam 6.3 Conventional Paper Substrates 6.4 Textile Substrates 6.5 Sponge Substrates 6.6 Cable-Type Substrates 7. Challenges 7.1 Engineering or Technical Issues 7.2 Establishment of Electrical Parameter Model 7.3 Consistency Detection 7.4 Industrial Standard 8. Future Opportunities 8.1 Requirement of the Society 8.2 Flexible Device and Microminiaturization 8.3 Hybridization 8.4 Intelligentization and Transparency 8.5 Improvement of the Cost Performance 9. Conclusions References 3. Functionalized Nanomaterials, Classification, Properties, and Functionalization Techniques 1. Introduction 2. Functionalized Nanomaterials 3. Choice of Functionalizing Strategy 4. Response to the Functionalizing Agents 5. Properties of Functionalized Nanoparticles 5.1 Morphology and Porosity 5.2 Optical Properties 5.3 Mechanical Properties 5.4 Reduced Toxicity 5.5 Electronic/Electrochemical Properties 6. Functionalization Techniques 6.1 Chemical Functionalization 6.2 Ligand Exchange Process 6.3 Grafting of Synthetic Polymers 6.4 The Adsorption of Polymeric Dispersants 6.5 In Situ Surface Modification 6.6 Covalent Configuration 6.7 Non-covalent Configuration 6.8 Amorphous Nanoparticle Coating 6.9 Intrinsic Surface Functionalization 6.10 Self-assembly 6.11 Supramolecular Functionalization 7. Methodical Designing of Advanced Functional Nanomaterials: A Broad Split-Up 7.1 Functionalization of CNT 7.2 Functionalization of Graphene and Graphene Oxide 7.3 Functionalization of Metal and Metal Oxide Nanoparticles 7.4 Functionalization of Silica-Based Nanomaterials 7.5 Polymeric Nanomaterials 8. Role of Functionalized Nanomaterials in Supercapacitors 8.1 Case Studies 9. Conclusion References 4. Functionalized Nanomaterials as Supercapacitor Devices: Current Trends and Beyond 1. Introduction 2. Functionalized Materials for Supercapacitor Devices 2.1 Functionalization of Carbonous Materials 2.2 Functionalization of Non-carbonous Materials 2.3 Functionalized Polymers for Supercapacitor 2.4 Nanocomposites for Supercapacitors 3. Future Perspective on Functionalized Materials 4. Conclusion References Part II. Fabrication of Functionalized Nanomaterials Based Supercapacitor Platforms 5. Additive Manufacturing for Functionalized Nanomaterials Dedicated to Supercapacitors 1. Introduction 1.1 Supercapacitors 2. Additive Manufacturing Process for Electrode Printing 2.1 Stereolithography (SLA) 2.2 Selective Laser Sintering (SLS) 2.3 Inkjet Printing (IJP) 2.4 Direct Ink Writing (DIW) 2.5 Sheet Lamination 2.6 Direct Energy Deposition (DED) 2.7 Fused Deposition Modeling (FDM) 3. Nanomaterials for SCs 3.1 Carbon-Based Nanomaterials 3.2 Transition Metal Oxides (TMOs) 3.3 Transition Metal Dichalcogenides (TMDCs) 3.4 MXenes 3.5 Polymer Nanocomposites 4. Challenges and Future Prospects 5. Conclusion References 6. Photolithographic Fabrication of Supercapacitor Electrodes 1. Introduction 2. Supercapacitor 3. Supercapacitor Electrodes 4. Fabrication Methods—Photolithography 5. Supercapacitors Performances 6. Applications of Supercapacitors 7. Future Outlook References 7. 3D Printing of Supercapacitor 1. Introduction 1.1 Supercapacitors 1.2 Introduction to 3D Printing 2. 3D Printing and Supercapacitors 2.1 Printable Supercapacitor Materials 2.2 Fabrication of SC by Different AM Processes 3. Conclusion, Recommendation and Future Scope References 8. Inkjet Printing Fabrication of Supercapacitors 1. Introduction 2. Basics of the InkJet Printing 3. Formulation of Ink Behavior 4. Inkjet Printed Electrodes for SC Applications 4.1 Inkjet-Printed Carbon-Based Electroactive Materials 4.2 Inkjet Printed Non-carbon-based Electroactive Materials 4.3 Inkjet Printed Multilayered Electroactive Materials 4.4 Inkjet Printed Hybrid Electroactive Materials 4.5 InkJet Printed Current Collector Substrate 5. Conclusion and Future Perspective References 9. Pre & Post-Treatment of Functionalized Nanomaterials in Fabricating Supercapacitor Electrodes 1. Introduction 2. Brief of Functionalized Nanomaterial for Supercapacitor Application 2.1 Carbon-Based Functionalized FNM 2.2 Polymer-Based Functionalized FNM 2.3 Metal-Based Supercapacitor Electrode Material 2.4 Composite-Based Supercapacitor Electrode Materials 3. Pre-treatment of Functionalized Nanomaterials 3.1 Pre-Treatment Methods for Carbon-Based FNM 3.2 Pre-treatment of Polymer-Based FNM 4. Pre-treatment Methods for Metal-Based FNM 5. Post-treatment for Functionalized Nanomaterials 5.1 Thermal Treatment 5.2 Plasma Treatment 5.3 Sonochemical Treatment 6. Conclusion References Part III. Functionalized Nanomaterials Supercapacitor 10. Functionalization Techniques for Carbon Dedicated to Electrochemical Use 1. Introduction 2. Functionalization Techniques of Carbon and Their Electrochemical Applications 2.1 Oxidation 2.2 Silanization 2.3 Surfactant Adsorption 2.4 Silylation 2.5 Amidation 2.6 Polymer Grafting 3. Conclusion References 11. Forms of Functionalized Carbon-Based Nanomaterials, Synthesis, Classifications, and Their Electrochemical Activities for Supercapacitors 1. Introduction 2. Classification of Carbon-Based Nanomaterials 3. Synthesis of Carbon Nanomaterials 3.1 Zero-Dimensional Carbon Allotropes 3.2 One-Dimensional (1D) Carbon Allotropes 3.3 Two-Dimensional (2D) Carbon Allotropes 3.4 Three-Dimensional (3D) Carbon Allotropes 4. Functionalization of Carbon Nanomaterials 4.1 Functionalized CNTs for Supercapacitors 4.2 Functionalized Graphene-Based Materials for Supercapacitors 4.3 Functionalized Fullerene-Based Materials for Supercapacitors 4.4 Functionalized Porous-Carbon Material for Supercapacitors 5. Summary and Outlook References 12. Functionalization Techniques for the Development of Metal-Oxide/Hydroxide-Based Supercapacitors 1. Introduction 2. Functionalization Techniques 2.1 Intrinsic Alteration 2.2 Recent Progress in Intrinsic Alteration Techniques 2.3 Extrinsic Alteration 2.4 Recent Progress in Extrinsic Alteration Techniques 2.5 Electrode Engineering 2.6 Recent Progress in Electrode Engineering Techniques 3. Conclusion References 13. Functionalization Techniques for the Development of Conducting Polymer-Based Supercapacitors 1. Introduction 2. Polymers 3. Classification of Polymers 3.1 Elementary Polymer Framework 3.2 Copolymers 4. Functionalization Techniques for Conducting Polymer 4.1 Additions 4.2 Substitutions 4.3 Eliminations 4.4 Isomerizations 5. Conducting Polymer for Supercapacitors 5.1 Graphene-Polymer Supercapacitors 5.2 PANi 5.3 PPy 5.4 Pedot 6. Metal Oxide-Polymer Supercapacitors 7. Polymer Nanocomposites in Water Treatment and Food Packaging 8. Water Treatment 9. Food Packaging 9.1 Active Packaging 9.2 Antioxidant Systems 9.3 Antimicrobial Systems 9.4 Scavengers/Absorbers 9.5 Intelligent Packaging 10. Conclusion References 14. Chemical Modifications for the Development of Conducting Polymer-Based Supercapacitors 1. Introduction Conducting Polymer-Based Supercapacitors 2. Functionalization Methods 2.1 Doping 2.2 Copolymerization 2.3 Comparison of Functionalization Techniques 3. Types of Conducting Polymer-Based Capacitors 3.1 Electrochemical Supercapacitors 3.2 Pseudocapacitors (PCs) 3.3 Hybrid Supercapacitors 4. Applications of Conducting Polymer-Based Supercapacitors 4.1 Energy Storage 4.2 Sensors 5. Smart Grid Sensors 5.1 Energy Conversion Devices References Part IV. FNMs Based Supercapacitor for Environmental Applications 15. Environmental Applications of Carbon-Based Supercapacitors 1. Introduction 2. Carbon Electrodes for Supercapacitor Applications 2.1 Elemental Carbon 2.2 Carbon Dots 2.3 Graphite—Graphene Family 2.4 Activated Carbon 2.5 Carbon Nanotubes 3. Environmental Aspects of Carbon Electrodes 3.1 Green Synthesis of Carbon Derivatives 3.2 Recycling of Carbon 3.3 Environmental Applications of Carbon 4. Conclusion References 16. Metal Oxide and Hydroxide-Based Functionalized Nanomaterials as Supercapacitors and Their Environmental Impact 1. Nanomaterials and Their Characteristics for Supercapacitors 2. Fabrications and Designs of Semiconducting Metal-Oxides/Hydroxides 3. Morphological Investigations of Modified Metal-Oxides for Supercapacitors 4. Supercapacitor Applications of Metal-Oxides 4.1 Aqueous Asymmetric Supercapacitor Devices 4.2 Metal-Hydroxide-Based Supercapacitors 5. Supercapacitors for Environmental Impacts 6. Future Prospects and Conclusion References 17. Eco-Friendly Conducting Polymer-Based Functionalized Nanocomposites Dedicated for Electrochemical Devices 1. Introduction to Conducting Polymer 1.1 Synthesis of Different Conducting Polymers 1.2 Strategies for the Development of Tailor-Made Conducting Polymers 2. Electrochemical Properties of Conducting Polymers 2.1 Composite Materials 2.2 Conducting Polymer Nanocomposites 2.3 Electrochemical Properties of Conducting Polymer Nanocomposites 3. Application to Electrochemical Sensors 3.1 Electrochemical Sensors 3.2 Applications of Polyaniline and Related Nanocomposite Materials as Sensors 3.3 Poly(o-anisidine) and Its Related Nanocomposite Material Sensor Applications 3.4 Polypyrrole and Its Related Nanocomposite Material Sensor Applications 3.5 Sensor Applications of Other Conducting Polymers and Their Related Nanocomposite Materials 4. Conclusion References 18. Comparison of Different Functionalized Materials for Supercapacitors: General Overview of the Environmental Awareness 1. Introduction 1.1 Need for Supercapacitor 2. Types of Supercapacitors 2.1 Electrochemical Double-Layer Capacitors (EDLCs) 2.2 Pseudo-Capacitors 2.3 Hybrid Capacitors 3. Materials 3.1 Transition Metal Oxides 3.2 Metal Hydroxides 3.3 Metal Sulfides 3.4 Conducting Polymers 3.5 Carbon-Based Materials 4. Environmental Effects of Various Functionalized Material Electrodes 5. Conclusion References Part V. FNMs Based Supercapacitor for Food and Beverages Applications 19. Role of FNMs-Based Supercapacitors in the Food and Beverage Industry 1. Introduction 2. Food and Beverage Contamination 2.1 Inorganic Anions and Compounds 2.2 Heavy Metals 2.3 Toxins 3. Functionalized Nanomaterials for Sensing in the Food and Beverage Industry 3.1 Materials-Based Food and Beverage Supercapacitors 4. Conclusions and Perspectives References 20. Polymers Nanocomposite Supercapacitors for Water Treatment and Food Packaging 1. Introduction 1.1 Historical Background of Nanomaterials 1.2 Supercapacitor 1.3 Composites 2. Food Packing for Nanomaterials 2.1 Classification of Nano-packaging Systems 2.2 Biobased Materials and Their Composites and Food Packing Application 2.3 Essentials Oils (EOs) for Active Food Packaging 3. Water Treatment 4. Challenges and Food Active Specific Concerns References Part VI. FNMs Based Supercapacitor for Health Care Applications 21. Functional Polymer Nanocomposites as Supercapacitors for Health Care 1. Introduction 2. Flexible Supercapacitors 2.1 Electrode Materials for Supercapacitors 3. Bioelectronics Powered by a Supercapacitor 3.1 Wearable 3.2 Implantable 3.3 Sensing Unit 3.4 Wireless Power Supply 3.5 Self-Powering or Self-Healing 4. Design Configuration and Fabrication Techniques 5. Conclusions References Part VII. FNMs Based Supercapacitor for Emerging Industrial Applications 22. Functionalized Graphene and its Derivatives for Industrial Energy Storage 1. Introduction 2. Brief History of Graphene 3. Methods for the Synthesis of Graphene 3.1 Mechanical Exfoliation 3.2 Ultrasonic Cleavage 3.3 Chemical Vapor Deposition (CVD) 3.4 Chemical Vapor Deposition via Plasma Induction 3.5 Chemical Exfoliation 3.6 Thermal Reduction 3.7 Unrolled Carbon Nanotube 3.8 Graphene from Different Graphite Derivatives 4. Basic Aspects of Graphene Functionalization 5. Graphene Derivatives 5.1 Graphene Oxide 5.2 Fluorographene 5.3 Graphane 5.4 Graphane Nanoribbons 5.5 Graphene-Carbon Nanocomposites 5.6 Transition Metal Oxides (TMO)/Graphene Nanocomposites 5.7 Graphene-Polymer Nanocomposites 5.8 Modified Graphene Nanostructures 5.9 Graphene/Transition Metal Nitrides (or Sulfide) Nanocomposites 6. Characterization of Graphene 6.1 X-Ray Diffraction (XRD) 6.2 Scanning Electron Microscopy (SEM) 6.3 High-Resolution Transmission Electron Microscopy (HR-TEM) 6.4 Atomic Force Microscopy (AFM) 6.5 Raman Spectroscopy 7. Graphene and Its Derivatives for Industrial Energy Storage 7.1 Supercapacitor 7.2 Battery 8. Conclusion and Future Work References 23. Functionalized Carbon and Its Derivatives Dedicated to Supercapacitors in Industrial Applications 1. Introduction 2. Synthesis Strategies of Porous Carbon 2.1 Carbonization-Activation Technique 2.2 Template Methods 2.3 Self-template Methods 3. Factors Influencing Supercapacitance Based on Porous Carbon 3.1 Specific Surface Area 3.2 Surface Heteroatoms 3.3 Electrode Structure 3.4 Structural Defects 3.5 Pore Structure 4. Advantage of Pure/Porous Carbon as Compared to Other Earlier Materials Used in Supercapacitor Electrodes Fabrication 4.1 Supercapacitor Carbon Electrodes 4.2 Activated Carbon 4.3 Carbon Nanotubes 4.4 Graphene 4.5 Onion-Like Carbon 4.6 Carbide-Derived Carbon 5. Parameters Required for Improving the Efficiency of Porous Carbon-Based Electrode 6. Conclusion References 24. FNM-Based Polymeric Nanocomposites Functionalized for Supercapacitor Applications in Different Industries 1. Introduction 2. Various Nanostructures for Functionalized Polymer Nanocomposite 3. Carbon Nanostructure 3.1 Single-Wall Nanotube 3.2 Multi-Wall Nanotube (MWCNT) 3.3 Carbon Nano Horn (CNH) 4. Graphene Nanostructure 4.1 Graphene/Single-Layer Graphite 4.2 Graphite Nanoplatelets 4.3 Graphene Oxide (GO) 4.4 Reduced Graphene Oxide 5. Functionalization Based on Metal Oxides as Fillers 6. Nanoparticles as Fillers in Polymer Electrolytes 7. Applications of Polymer Nanocomposites in Different Fields 7.1 Buffer 7.2 Power Harvesting 7.3 Low-Resistance Capacitors for Military 7.4 Nano Composite Supercapacitor 7.5 Dye-Sensitized Solar Cells 7.6 Railway References Part VIII. Economics and Commercialization of FNMs Based Supercapacitor 25 Current Trends in the Commercialization of Supercapacitors as Emerging Energy Storing Systems 1. Introduction 2. Historical Aspects of Supercapacitors 3. Fundamentals of Energy Storage 4. Upscale of Supercapacitors for Commercialization 5. Importance of Supercapacitors in Current Markets 6. Applicability of Supercapacitors in Marked and Economy 7. Summary and Commercial Perspective of Supercapacitors 8. Challenges and Future Opportunities 9. Conclusion References Part IX. Future of Functionalized Nanomaterials Based Supercapacitor 26. Future of Nanotechnology and Functionalized Nanomaterials 1. Introduction 2. Need for Functionalized Nanomaterials 3. Methods for Functionalizing Nanomaterials 3.1 Covalent Functionalization 3.2 Noncovalent Functionalization 3.3 Intrinsic Surface Engineering 4. Functionalization of Different Nanomaterials 4.1 Functionalization of Carbon-Based Nanomaterials 4.2 Functionalized 2D TMDs 4.3 Functionalized Magnetic Nanoparticles 5. Recent Updates and Use of FNM in Various Fields 5.1 Industrial Application 5.2 In Human Healthcare—Nanomedicine 5.3 Environmental 5.4 Inorganic and Heavy Metal Ion Removal 5.5 Sensing Toxic Gases and Other Organic Compounds 5.6 Electrochemical 5.7 Optoelectronics 6. Challenges and Future Perspectives 7. Conclusion References 27. FNM-Based Supercapacitor in Futuristic Application 1. Introduction 2. Brief of Supercapacitors 2.1 Supercapacitor Against Other Energy Storage Devices 2.2 Supercapacitor Categories and Operation Principle 3. Role of Functionalized Nanomaterials for Supercapacitors 4. Current Perspective and Challenges Using FNM-Based Supercapacitors 4.1 Recent Development in the Supercapacitor Market 4.2 Present Scenario of FNM-Based Supercapacitors 4.3 Challenges for FNM-Based Supercapacitors 5. Future Development of FNM-Based Supercapacitor 5.1 Technical Aspects 5.2 Application Aspect 6. Conclusion References