ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications

دانلود کتاب سنسورهای الکتروشیمیایی مبتنی بر نانومواد کاربردی: اصول، روش‌های ساخت و کاربردها

Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications

مشخصات کتاب

Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications

دسته بندی: فناوری نانو
ویرایش:  
نویسندگان:   
سری: Woodhead Publishing Series in Electronic and Optical Materials 
ISBN (شابک) : 0128237880, 9780128237885 
ناشر: Woodhead Publishing 
سال نشر: 2022 
تعداد صفحات: 612 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 72 مگابایت 

قیمت کتاب (تومان) : 55,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سنسورهای الکتروشیمیایی مبتنی بر نانومواد کاربردی: اصول، روش‌های ساخت و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover
Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications
Copyright
Contents
Contributors
Preface
Section A: Modern perspective in electrochemical-based sensors: Functionalized nanomaterials (FNMs)
	1 Functionalized nanomaterial-based electrochemical sensors: A sensitive sensor platform
		1.1  Introduction
		1.2  Quantum-Dot nanomaterial
		1.3  Gold nanoparticles
		1.4  Carbon-based materials
		1.5  Multiwalled nanotubes
		1.6  Graphene
		1.7  Carbon nanoparticle-based electrochemical sensor
		1.8  Magnetic nanoparticles
		1.9  Zinc oxide nanotubes
		1.10  Nickel oxide nanoparticles and carbon black
		1.11  Conclusion
		References
	2 Recent progress in the graphene functionalized nanomaterial-based electrochemical sensors
		2.1  Introduction
		2.2  Advantages of graphene-based biosensor
		2.3  Preparation of graphene-based biosensor
		2.4  Graphene biosensor for glucose and dopamine
		2.5  DNA-based biosensing
		2.6  Graphene biosensor for protein biomarkers
		2.7  Hb biosensor
		2.8  Cholesterol biosensor
		2.9  GN based biosensor for bacteria
		2.10  Conclusion
		References
Section B: Fabrication of functionalized nanomaterial-based electrochemical sensors platforms
	3 Application of hybrid nanomaterials for development of electrochemical sensors
		3.1  Introduction
		3.2  SiO 2 /MWCNTs, SiO 2 /MWCNTs/AgNPS, and GO/Sb 2 O 5
		3.3  Carbon dots/Fe 3 O 4 and rGO/carbon dots
		3.4  rGO/carbon dots/AuNPs
		3.5  Conclusion
		Websites
		References
	4 Biofunctionalization of functionalized nanomaterials for electrochemical sensors
		4.1  Introduction
		4.2  Biosensors
			4.2.1  Electrochemical biosensors
			4.2.2  Sensor applications of nanomaterials
			4.2.3  Biofunctionalization of nanomaterials
			4.2.4  Applications in electrochemical sensors
		4.3  Conclusion
		References
Section C: Functionalized carbon nanomaterial-based electrochemical sensors
	5 Functionalized carbon nanomaterials in electrochemical detection
		5.1  Introduction
			5.1.1  General overview
			5.1.2  Carbon nanotubes (CNTs) and carbon nanofibers (CNFs)
			5.1.3  Functionalization of CNTs
			5.1.4  Graphene
				5.1.4.1  Graphene is a material with great potential
				5.1.4.2  Properties of graphene
		5.2  Functionalization of carbon materials
			5.2.1  Need and importance of functionalization of carbon materials
			5.2.2  Types of functionalization
				5.2.2.1  Activation method
					Functionalization of activated carbons
				5.2.2.2  Hydrothermal method
				5.2.2.3  Immobilization, direct and in situ methods
				5.2.2.4  Direct method
				5.2.2.5  Thermal annealing
				5.2.2.6  Electrospinning method
				5.2.2.7  In situ method
		5.3  Applications of functionalized carbon materials in electrochemical biosensors
			5.3.1  Applications of modified electrodes in electrochemical biosensors
			5.3.2  Carbon materials as modifiers
			5.3.3  Fullerene modified electrodes
			5.3.4  Carbon nanotubes in electrochemical sensors
			5.3.5  Graphene-based materials in the electrochemical sensor
			5.3.6  Role of carbon/graphene quantum dots in electrochemical biosensors
			5.3.7  Carbon nanofibers as electroactive materials in electrochemical sensors
		Acknowledgment
		References
	6 Functionalized carbon material-based electrochemical sensors for day-to-day applications
		6.1  Introduction
		6.2  Electrochemical biosensors
			6.2.1  Amperometric biosensors
			6.2.2  Potentiometric biosensors
			6.2.3  Impedance biosensors
			6.2.4  Voltammetric biosensors
		6.3  Supercapacitors
		6.4  Gas sensors
		6.5  Wearable electronic devices
		6.6  Piezoelectric sensors
		6.7  Conclusion
		References
Section D: Noble metals, non-noble metal oxides and non-carbon-based electrochemical sensors
	7 Noble metals and nonnoble metal oxides based electrochemical sensors
		7.1  Introduction
		7.2  Synthesis of noble metal and nonnoble metal nanoparticles
			7.2.1  Top-down methods
			7.2.2  Bottom-up methods
		7.3  Noble metal-based electrochemical sensors
			7.3.1  Gold nanoparticles
			7.3.2  Silver nanoparticles
			7.3.3  Platinum nanoparticles
			7.3.4  Palladium nanoparticles
			7.3.5  Application of noble metal-based electrochemical sensors
				7.3.5.1  Glucose detection
				7.3.5.2  Hydrogen peroxide sensors
				7.3.5.3  Environmental applications
				7.3.5.4  Medical applications
		7.4  Nonnoble metal oxides based electrochemical sensors
			7.4.1  Properties of nonnoble metal oxides
			7.4.2  Application of nonnoble metal oxides based electrochemical sensors
		7.5  Conclusion
		References
Section E: Functionalized nanomaterial-based electrochemical based sensors for environmental applications
	8 Functionalized nanomaterial-based environmental sensors: An overview
		8.1  Introduction
		8.2  Noble metal nanomaterials
			8.2.1  Gold nanomaterials
			8.2.2  Silver nanoparticles
			8.2.3  Platinum nanoparticles
			8.2.4  Palladium nanoparticles
		8.3  Metal oxide nanomaterials
		8.4  Carbon nanomaterials
			8.4.1  Carbon dots
			8.4.2  Carbon nanotubes
			8.4.3  Graphene
		8.5  Polymer nanomaterials
		8.6  Conclusions and perspectives
		References
	9 Advantages and limitations of functionalized nanomaterials based electrochemical sensors environmental monitoring
		9.1  Introduction
		9.2  Advantages
		9.3  Limitations
		9.4  Conclusions and future outlooks
		References
Section F: Functionalized nanomaterial-based electrochemical sensors technology for food and beverages applicatio ...
	10 Attributes of functionalized nanomaterial-based electrochemical sensors for food and beverage analysis
		10.1  Introduction
		10.2  Properties of electrochemical sensor in food and beverage analysis
			10.2.1  Nanobiosensors
		10.3  EC sensors based on functionalized nanomaterials
			10.3.1  Carbon-based nanomaterials
			10.3.2  Metal and metal oxide nanomaterials
		10.4  Additives and contaminants
		10.5  Pesticides
		10.6  Conclusion and future perspective
		References
	11 The use of FNMs-based electrochemical sensors in the food and beverage industry
		11.1  Introduction
		11.2  Food and beverage contamination
			11.2.1  Food additives
			11.2.2  Heavy metals
			11.2.3  Inorganic anions and compounds
			11.2.4  Phenolic compounds
			11.2.5  Pesticides
			11.2.6  Toxins
			11.2.7  Pathogen
		11.3  Functionalized nanomaterials for sensing in the food and beverage industry
			11.3.1  Metal (oxide) based functionalized nanomaterial
			11.3.2  Carbon based functionalized nanomaterials
				11.3.2.1  Carbon nanotube
				11.3.2.2  Graphene materials
		11.4  Conclusions and perspectives
		References
	12 Trends in functionalized Ł NMs-based electrochemical sensors in the food and beverage industry
		12.1  Introduction
		12.2  Sensor applications of NMs in the food industry
		12.3  Reliability problems of NMs for electrochemical sensor applications in food analysis
		12.4  Conclusion
		References
Section G: Functionalized nanomaterial-based electrochemical sensors for point-of-care applications
	13 Functionalized nanomaterial-based medical sensors for point-of-care applications: An overview
		13.1  Introduction
		13.2  0D (spherical) nanomaterials
			13.2.1  Noble metal nanoparticles
				13.2.1.1  Gold nanoparticles
				13.2.1.2  Silver nanoparticles
				13.2.1.3  Platinum nanoparticles
			13.2.2  Magnetic nanoparticles
			13.2.3  Quantum dots
			13.2.4  Carbon-based dots
		13.3  One-dimensional nanomaterials
			13.3.1  The synthesis of 1D nanomaterials
				13.3.1.1  Template-directed nanowire synthesis
				13.3.1.2  Electrochemical deposition
				13.3.1.3  Pressure injection
				13.3.1.4  Sol-gel deposition
				13.3.1.5  Vapor phase growth
				13.3.1.6  Vapor-solid mechanism
				13.3.1.7  Carbothermal growth
				13.3.1.8  Solution-based growth
				13.3.1.9  Hydrothermal and solvothermal methods
			13.3.2  Types of 1D nanomaterials
				13.3.2.1  Nanotubes
				13.3.2.2  Nanowires
				13.3.2.3  Nanorods
				13.3.2.4  Carbon nanorods
				13.3.2.5  ZnO nanorods
				13.3.2.6  Gold nanorods
				13.3.2.7  Magnetic nanorods
		13.4  Two-dimensional nanomaterials
			13.4.1  Graphene
			13.4.2  Boron nitride (BN)
			13.4.3  Phosphorene
			13.4.4  Transition metal dichalcogenides (TMDs)
			13.4.5  MXene
		13.5  Three-dimensional nanomaterials
		13.6  Conclusion and future perspective
		References
	14 Functionalized nanomaterial- based electrochemical sensors for point-of-care devices
		14.1  Introduction
		14.2  Electrochemical sensors
		14.3  Applications of electrochemical sensors
			14.3.1  History of nanotechnology for life sciences
			14.3.2  Functionalized nanomaterials-based electrochemical sensors
		14.4  The use of functionalized nanomaterials-based electrochemical sensors in point-of-care diagnostics
		14.5  Conclusions
		Acknowledgment
		References
	15 Current trends of functionalized nanomaterial-based sensors in point-of-care diagnosis
		15.1  Introduction
		15.2  Methods of functionalization of nanomaterials
			15.2.1  Biological method
			15.2.2  Chemical method
			15.2.3  Physical method
		15.3  Point-of-care diagnostics
		15.4  Conclusion
		References
Section H: Health, safety, and regulations issues of functionalized nanomaterials
	16 Current status of environmental, health, and safety issues of functionalized nanomaterials
		16.1  Introduction
		16.2  Environmental health and hazards
			16.2.1  Categories of environmental health hazards
		16.3  Opportunities and challenges
			16.3.1  The science of EHS research
			16.3.2  Importance of addressing EHS issues
			16.3.3  Exposure of hazards and its distribution
			16.3.4  Restricted or absence of information ought to be finished with the followings
			16.3.5  End for the danger evaluation
			16.3.6  Distinguishing proof of human dangers
			16.3.7  Ecological openness
			16.3.8  Safety precautions to avoid risks
		References
	17 Functionalized metal and metal oxide nanomaterial-based electrochemical sensors
		17.1  Introduction to sensors
		17.2  Working principle and classification of electrochemical sensors
		17.3  Applications of electrochemical sensors
		17.4  Carbon nanomaterials-based electrochemical sensors
		17.5  Metallic nanoparticles based electrochemical sensors
		17.6  Metallic oxide nanoparticles based electrochemical sensors
		17.7  Conclusion
		17.8  Challenges and prospects
		References
	18 Functionalized nanomaterials and workplace health and safety
		18.1  Introduction
		18.2  Functionalized nanomaterials
			18.2.1  Physicochemical effects of toxicity of nanomaterials
				18.2.1.1  Size
				18.2.1.2  Shape
				18.2.1.3  Surface area
				18.2.1.4  Aggregation/agglomeration
				18.2.1.5  Crystallinity
				18.2.1.6  Chemical composition
				18.2.1.7  Surface charge and modification
				18.2.1.8  Solubility
			18.2.2  Ways of exposure to nanomaterials
				18.2.2.1  Dermal absorption
				18.2.2.2  Pulmonary absorption
				18.2.2.3  Eye absorption
			18.2.3  Risk assessment and measures that can be taken
				18.2.3.1  Risk assessment
				18.2.3.2  Risk control
		18.3  Conclusion
		References
	19 Layer-by-layer nanostructured films for electrochemical sensors fabrication
		19.1  Introduction
		19.2  Layer-by-layer technique
		19.3  LbL electrochemical sensors
			19.3.1  Potentially toxic metals detection
			19.3.2  Pharmaceuticals and personal care products
			19.3.3  Pesticides
		19.4  LbL electrochemical biosensors
			19.4.1  LbL-assembled electrochemical immunosensors
			19.4.2  LbL-assembled electrochemical enzymatic sensors
			19.4.3  LbL-assembled electrochemical nucleic acid-based sensors
		19.5  Final remarks
		Acknowledgments
		References
Section I: Economics and commercialization of functionalized nanomaterial-based electrochemical sensors
	20 Fabrication of functionalized nanomaterial-based electrochemical sensors’ platforms
		20.1  Introduction
		20.2  Environmental sensors
		20.3  Cell-based sensor
		20.4  COVID-19 biosensors
		References
	21 Advantages and limitations of functionalized graphene-based electrochemical sensors for environmental monitoring
		21.1  General aspects
		21.2  Graphene functionalization
		21.3  Functionalized graphene-based electrochemical sensors
		21.4  Environmental applications
			21.4.1  Pharmaceuticals
			21.4.2  Pesticides
			21.4.3  Heavy metals
		21.5  Concluding remarks and perspectives
		Acknowledgments
		Thematic websites
		References
	22 TiO 2 nanotube arrays grafted with metals with enhanced electroactivity for electrochemical sensors and devices
		22.1  Introduction
		22.2  TiO 2 nanotubes
			22.2.1  Anodic oxidation and growth
			22.2.2  Factors affecting ordering and structure of TiO 2 nanotubes
		22.3  Grafting of noble metals and nonnoble materials on anodic TiO 2 nanotubes
		22.4  Electrochemical applications of metal/TiO 2 NTs based sensors
			22.4.1  Energy
				22.4.1.1  Methanol detection
				22.4.1.2  Ethanol detection
				22.4.1.3  Borohydride detection
			22.4.2  Biosensing
				22.4.2.1  Glucose detection
				22.4.2.2  Ascorbic acid detection
				22.4.2.3  Dopamine detection
		22.5  Summary and outlook
		References
Section J: Future of functionalized nanomaterial-based electrochemical sensors
	23 Functionalized carbon nanomaterial-based electrochemical sensors: Quick look on the future of fitness
		23.1  Introduction
		23.2  Carbon-nanotube-based electrochemical sensors
			23.2.1  Nonenzymatic approach
			23.2.2  Enzymatic approach
		23.3  Graphene-based electrochemical sensors
			23.3.1  Nonenzymatic approach
			23.3.2  Enzymatic approach
		23.4  Carbon nanodots
		23.5  Other carbon functional materials
		23.6  Carbon nanomaterials in wearable sensors and future scope
		References
Index
Back Cover




نظرات کاربران