دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فناوری نانو ویرایش: نویسندگان: Chaudhery Mustansar Hussain. Jamballi G. Manjunatha سری: Woodhead Publishing Series in Electronic and Optical Materials ISBN (شابک) : 0128237880, 9780128237885 ناشر: Woodhead Publishing سال نشر: 2022 تعداد صفحات: 612 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 72 مگابایت
در صورت تبدیل فایل کتاب Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سنسورهای الکتروشیمیایی مبتنی بر نانومواد کاربردی: اصول، روشهای ساخت و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications Copyright Contents Contributors Preface Section A: Modern perspective in electrochemical-based sensors: Functionalized nanomaterials (FNMs) 1 Functionalized nanomaterial-based electrochemical sensors: A sensitive sensor platform 1.1 Introduction 1.2 Quantum-Dot nanomaterial 1.3 Gold nanoparticles 1.4 Carbon-based materials 1.5 Multiwalled nanotubes 1.6 Graphene 1.7 Carbon nanoparticle-based electrochemical sensor 1.8 Magnetic nanoparticles 1.9 Zinc oxide nanotubes 1.10 Nickel oxide nanoparticles and carbon black 1.11 Conclusion References 2 Recent progress in the graphene functionalized nanomaterial-based electrochemical sensors 2.1 Introduction 2.2 Advantages of graphene-based biosensor 2.3 Preparation of graphene-based biosensor 2.4 Graphene biosensor for glucose and dopamine 2.5 DNA-based biosensing 2.6 Graphene biosensor for protein biomarkers 2.7 Hb biosensor 2.8 Cholesterol biosensor 2.9 GN based biosensor for bacteria 2.10 Conclusion References Section B: Fabrication of functionalized nanomaterial-based electrochemical sensors platforms 3 Application of hybrid nanomaterials for development of electrochemical sensors 3.1 Introduction 3.2 SiO 2 /MWCNTs, SiO 2 /MWCNTs/AgNPS, and GO/Sb 2 O 5 3.3 Carbon dots/Fe 3 O 4 and rGO/carbon dots 3.4 rGO/carbon dots/AuNPs 3.5 Conclusion Websites References 4 Biofunctionalization of functionalized nanomaterials for electrochemical sensors 4.1 Introduction 4.2 Biosensors 4.2.1 Electrochemical biosensors 4.2.2 Sensor applications of nanomaterials 4.2.3 Biofunctionalization of nanomaterials 4.2.4 Applications in electrochemical sensors 4.3 Conclusion References Section C: Functionalized carbon nanomaterial-based electrochemical sensors 5 Functionalized carbon nanomaterials in electrochemical detection 5.1 Introduction 5.1.1 General overview 5.1.2 Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) 5.1.3 Functionalization of CNTs 5.1.4 Graphene 5.1.4.1 Graphene is a material with great potential 5.1.4.2 Properties of graphene 5.2 Functionalization of carbon materials 5.2.1 Need and importance of functionalization of carbon materials 5.2.2 Types of functionalization 5.2.2.1 Activation method Functionalization of activated carbons 5.2.2.2 Hydrothermal method 5.2.2.3 Immobilization, direct and in situ methods 5.2.2.4 Direct method 5.2.2.5 Thermal annealing 5.2.2.6 Electrospinning method 5.2.2.7 In situ method 5.3 Applications of functionalized carbon materials in electrochemical biosensors 5.3.1 Applications of modified electrodes in electrochemical biosensors 5.3.2 Carbon materials as modifiers 5.3.3 Fullerene modified electrodes 5.3.4 Carbon nanotubes in electrochemical sensors 5.3.5 Graphene-based materials in the electrochemical sensor 5.3.6 Role of carbon/graphene quantum dots in electrochemical biosensors 5.3.7 Carbon nanofibers as electroactive materials in electrochemical sensors Acknowledgment References 6 Functionalized carbon material-based electrochemical sensors for day-to-day applications 6.1 Introduction 6.2 Electrochemical biosensors 6.2.1 Amperometric biosensors 6.2.2 Potentiometric biosensors 6.2.3 Impedance biosensors 6.2.4 Voltammetric biosensors 6.3 Supercapacitors 6.4 Gas sensors 6.5 Wearable electronic devices 6.6 Piezoelectric sensors 6.7 Conclusion References Section D: Noble metals, non-noble metal oxides and non-carbon-based electrochemical sensors 7 Noble metals and nonnoble metal oxides based electrochemical sensors 7.1 Introduction 7.2 Synthesis of noble metal and nonnoble metal nanoparticles 7.2.1 Top-down methods 7.2.2 Bottom-up methods 7.3 Noble metal-based electrochemical sensors 7.3.1 Gold nanoparticles 7.3.2 Silver nanoparticles 7.3.3 Platinum nanoparticles 7.3.4 Palladium nanoparticles 7.3.5 Application of noble metal-based electrochemical sensors 7.3.5.1 Glucose detection 7.3.5.2 Hydrogen peroxide sensors 7.3.5.3 Environmental applications 7.3.5.4 Medical applications 7.4 Nonnoble metal oxides based electrochemical sensors 7.4.1 Properties of nonnoble metal oxides 7.4.2 Application of nonnoble metal oxides based electrochemical sensors 7.5 Conclusion References Section E: Functionalized nanomaterial-based electrochemical based sensors for environmental applications 8 Functionalized nanomaterial-based environmental sensors: An overview 8.1 Introduction 8.2 Noble metal nanomaterials 8.2.1 Gold nanomaterials 8.2.2 Silver nanoparticles 8.2.3 Platinum nanoparticles 8.2.4 Palladium nanoparticles 8.3 Metal oxide nanomaterials 8.4 Carbon nanomaterials 8.4.1 Carbon dots 8.4.2 Carbon nanotubes 8.4.3 Graphene 8.5 Polymer nanomaterials 8.6 Conclusions and perspectives References 9 Advantages and limitations of functionalized nanomaterials based electrochemical sensors environmental monitoring 9.1 Introduction 9.2 Advantages 9.3 Limitations 9.4 Conclusions and future outlooks References Section F: Functionalized nanomaterial-based electrochemical sensors technology for food and beverages applicatio ... 10 Attributes of functionalized nanomaterial-based electrochemical sensors for food and beverage analysis 10.1 Introduction 10.2 Properties of electrochemical sensor in food and beverage analysis 10.2.1 Nanobiosensors 10.3 EC sensors based on functionalized nanomaterials 10.3.1 Carbon-based nanomaterials 10.3.2 Metal and metal oxide nanomaterials 10.4 Additives and contaminants 10.5 Pesticides 10.6 Conclusion and future perspective References 11 The use of FNMs-based electrochemical sensors in the food and beverage industry 11.1 Introduction 11.2 Food and beverage contamination 11.2.1 Food additives 11.2.2 Heavy metals 11.2.3 Inorganic anions and compounds 11.2.4 Phenolic compounds 11.2.5 Pesticides 11.2.6 Toxins 11.2.7 Pathogen 11.3 Functionalized nanomaterials for sensing in the food and beverage industry 11.3.1 Metal (oxide) based functionalized nanomaterial 11.3.2 Carbon based functionalized nanomaterials 11.3.2.1 Carbon nanotube 11.3.2.2 Graphene materials 11.4 Conclusions and perspectives References 12 Trends in functionalized Ł NMs-based electrochemical sensors in the food and beverage industry 12.1 Introduction 12.2 Sensor applications of NMs in the food industry 12.3 Reliability problems of NMs for electrochemical sensor applications in food analysis 12.4 Conclusion References Section G: Functionalized nanomaterial-based electrochemical sensors for point-of-care applications 13 Functionalized nanomaterial-based medical sensors for point-of-care applications: An overview 13.1 Introduction 13.2 0D (spherical) nanomaterials 13.2.1 Noble metal nanoparticles 13.2.1.1 Gold nanoparticles 13.2.1.2 Silver nanoparticles 13.2.1.3 Platinum nanoparticles 13.2.2 Magnetic nanoparticles 13.2.3 Quantum dots 13.2.4 Carbon-based dots 13.3 One-dimensional nanomaterials 13.3.1 The synthesis of 1D nanomaterials 13.3.1.1 Template-directed nanowire synthesis 13.3.1.2 Electrochemical deposition 13.3.1.3 Pressure injection 13.3.1.4 Sol-gel deposition 13.3.1.5 Vapor phase growth 13.3.1.6 Vapor-solid mechanism 13.3.1.7 Carbothermal growth 13.3.1.8 Solution-based growth 13.3.1.9 Hydrothermal and solvothermal methods 13.3.2 Types of 1D nanomaterials 13.3.2.1 Nanotubes 13.3.2.2 Nanowires 13.3.2.3 Nanorods 13.3.2.4 Carbon nanorods 13.3.2.5 ZnO nanorods 13.3.2.6 Gold nanorods 13.3.2.7 Magnetic nanorods 13.4 Two-dimensional nanomaterials 13.4.1 Graphene 13.4.2 Boron nitride (BN) 13.4.3 Phosphorene 13.4.4 Transition metal dichalcogenides (TMDs) 13.4.5 MXene 13.5 Three-dimensional nanomaterials 13.6 Conclusion and future perspective References 14 Functionalized nanomaterial- based electrochemical sensors for point-of-care devices 14.1 Introduction 14.2 Electrochemical sensors 14.3 Applications of electrochemical sensors 14.3.1 History of nanotechnology for life sciences 14.3.2 Functionalized nanomaterials-based electrochemical sensors 14.4 The use of functionalized nanomaterials-based electrochemical sensors in point-of-care diagnostics 14.5 Conclusions Acknowledgment References 15 Current trends of functionalized nanomaterial-based sensors in point-of-care diagnosis 15.1 Introduction 15.2 Methods of functionalization of nanomaterials 15.2.1 Biological method 15.2.2 Chemical method 15.2.3 Physical method 15.3 Point-of-care diagnostics 15.4 Conclusion References Section H: Health, safety, and regulations issues of functionalized nanomaterials 16 Current status of environmental, health, and safety issues of functionalized nanomaterials 16.1 Introduction 16.2 Environmental health and hazards 16.2.1 Categories of environmental health hazards 16.3 Opportunities and challenges 16.3.1 The science of EHS research 16.3.2 Importance of addressing EHS issues 16.3.3 Exposure of hazards and its distribution 16.3.4 Restricted or absence of information ought to be finished with the followings 16.3.5 End for the danger evaluation 16.3.6 Distinguishing proof of human dangers 16.3.7 Ecological openness 16.3.8 Safety precautions to avoid risks References 17 Functionalized metal and metal oxide nanomaterial-based electrochemical sensors 17.1 Introduction to sensors 17.2 Working principle and classification of electrochemical sensors 17.3 Applications of electrochemical sensors 17.4 Carbon nanomaterials-based electrochemical sensors 17.5 Metallic nanoparticles based electrochemical sensors 17.6 Metallic oxide nanoparticles based electrochemical sensors 17.7 Conclusion 17.8 Challenges and prospects References 18 Functionalized nanomaterials and workplace health and safety 18.1 Introduction 18.2 Functionalized nanomaterials 18.2.1 Physicochemical effects of toxicity of nanomaterials 18.2.1.1 Size 18.2.1.2 Shape 18.2.1.3 Surface area 18.2.1.4 Aggregation/agglomeration 18.2.1.5 Crystallinity 18.2.1.6 Chemical composition 18.2.1.7 Surface charge and modification 18.2.1.8 Solubility 18.2.2 Ways of exposure to nanomaterials 18.2.2.1 Dermal absorption 18.2.2.2 Pulmonary absorption 18.2.2.3 Eye absorption 18.2.3 Risk assessment and measures that can be taken 18.2.3.1 Risk assessment 18.2.3.2 Risk control 18.3 Conclusion References 19 Layer-by-layer nanostructured films for electrochemical sensors fabrication 19.1 Introduction 19.2 Layer-by-layer technique 19.3 LbL electrochemical sensors 19.3.1 Potentially toxic metals detection 19.3.2 Pharmaceuticals and personal care products 19.3.3 Pesticides 19.4 LbL electrochemical biosensors 19.4.1 LbL-assembled electrochemical immunosensors 19.4.2 LbL-assembled electrochemical enzymatic sensors 19.4.3 LbL-assembled electrochemical nucleic acid-based sensors 19.5 Final remarks Acknowledgments References Section I: Economics and commercialization of functionalized nanomaterial-based electrochemical sensors 20 Fabrication of functionalized nanomaterial-based electrochemical sensors’ platforms 20.1 Introduction 20.2 Environmental sensors 20.3 Cell-based sensor 20.4 COVID-19 biosensors References 21 Advantages and limitations of functionalized graphene-based electrochemical sensors for environmental monitoring 21.1 General aspects 21.2 Graphene functionalization 21.3 Functionalized graphene-based electrochemical sensors 21.4 Environmental applications 21.4.1 Pharmaceuticals 21.4.2 Pesticides 21.4.3 Heavy metals 21.5 Concluding remarks and perspectives Acknowledgments Thematic websites References 22 TiO 2 nanotube arrays grafted with metals with enhanced electroactivity for electrochemical sensors and devices 22.1 Introduction 22.2 TiO 2 nanotubes 22.2.1 Anodic oxidation and growth 22.2.2 Factors affecting ordering and structure of TiO 2 nanotubes 22.3 Grafting of noble metals and nonnoble materials on anodic TiO 2 nanotubes 22.4 Electrochemical applications of metal/TiO 2 NTs based sensors 22.4.1 Energy 22.4.1.1 Methanol detection 22.4.1.2 Ethanol detection 22.4.1.3 Borohydride detection 22.4.2 Biosensing 22.4.2.1 Glucose detection 22.4.2.2 Ascorbic acid detection 22.4.2.3 Dopamine detection 22.5 Summary and outlook References Section J: Future of functionalized nanomaterial-based electrochemical sensors 23 Functionalized carbon nanomaterial-based electrochemical sensors: Quick look on the future of fitness 23.1 Introduction 23.2 Carbon-nanotube-based electrochemical sensors 23.2.1 Nonenzymatic approach 23.2.2 Enzymatic approach 23.3 Graphene-based electrochemical sensors 23.3.1 Nonenzymatic approach 23.3.2 Enzymatic approach 23.4 Carbon nanodots 23.5 Other carbon functional materials 23.6 Carbon nanomaterials in wearable sensors and future scope References Index Back Cover