دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الکترونیک ویرایش: نویسندگان: Pierre-Emmanuel Gaillardon سری: IET Materials Circuits and Devices Series, 39 ISBN (شابک) : 1785615580, 9781785615580 ناشر: The Institution of Engineering and Technology سال نشر: 2019 تعداد صفحات: 340 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 33 مگابایت
در صورت تبدیل فایل کتاب Functionality-Enhanced Devices: An alternative to Moore's Law به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دستگاه های بهبود یافته با عملکرد: جایگزینی برای قانون مور نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک راه حل ممکن برای مسئله کلیدی در مهندسی الکترونیک - نزدیک شدن به محدودیت های مقیاس بندی CMOS - را با بهره گیری از تمایل تماس های شاتکی برای تشکیل در رابط های کانال در دستگاه های نانومقیاس مورد بحث قرار می دهد. به جای سرکوب این پدیده، یک دستگاه با قابلیت افزایش یافته از آن برای افزایش عملکرد سوئیچینگ استفاده می کند. این دستگاهها ترانزیستورهای چندگانه مستقل دروازهای، میدان اثر، و سایر دستگاههای مرتبط در مقیاس نانو هستند که قطبیت آنها به صورت الکترواستاتیک قابل کنترل است. بهبود عملکرد این دستگاهها عملکرد محاسباتی (عملکرد) را در واحد سطح افزایش میدهد و منجر به مدارهایی با چگالی، عملکرد و کارایی انرژی بهتر میشود.
این کتاب پوشش کامل و سیستماتیکی را ارائه میکند. دستگاه های با عملکرد پیشرفته و استفاده از آنها در مدارها و معماری های اثبات مفهوم. تئوری و علم مواد پشت این دستگاهها به تفصیل مورد بررسی قرار میگیرند و تکنیکهای مختلف ساخت آزمایشی مورد بررسی قرار میگیرند. بعلاوه، کاربردهای بالقوه دستگاههای افزایشیافته عملکرد با تأکید خاصی بر طراحی مدار، اتوماسیون طراحی و محکگذاری مشخص شده است.
This book discusses one possible solution to the key issue in electronics engineering - the approaching limits of CMOS scaling - by taking advantage of the tendency of Schottky contacts to form at channel interfaces in nanoscale devices. Rather than suppressing this phenomenon, a functionality-enhanced device exploits it to increase switching functionality. These devices are Multiple-Independent-Gate-Field-Effect-Transistors, and other related nanoscale devices, whose polarity is electrostatically controllable. The functionality enhancement of these devices increases computational performance (function) per unit area and leads to circuits with better density, performance and energy efficiency.
The book provides thorough and systematic coverage of enhanced-functionality devices and their use in proof-of-concept circuits and architectures. The theory and materials science behind these devices are addressed in detail, and various experimental fabrication techniques are explored. In addition, the potential applications of functionality-enhanced devices are outlined with a specific emphasis on circuit design, design automation and benchmarking.
Cover Contents 1 Introduction to functionality-enhanced devices 1.1 General background 1.1.1 Advanced transistor scaling 1.1.2 Emerging devices 1.1.2.1 Unconventional channel materials 1.1.2.2 Sub-60 mV/decade swing FETs 1.1.2.3 Functionality-enhanced devices 1.1.3 Toward nanosystems 1.2 Book organization Acknowledgments References Part I Materials and device research related to functionality-enhanced devices 2 Germanium-based polarity-controllable transistors 2.1 Introduction 2.2 Theory and device simulations 2.3 Fabrication of polarity-controllable germanium nanowire transistors 2.4 Electrical characteristics of polarity-controllable germanium nanowire transistors 2.5 Benchmark and perspectives 2.6 Conclusions Acknowledgments References 3 Two-dimensional materials for functionality-enhanced devices 3.1 2D materials for functionality-enhanced devices 3.1.1 Introduction 3.1.2 Non-carbon 2D materials with bandgaps 3.1.2.1 Hexagonal boron nitride 3.1.2.2 Phosphorene 3.1.2.3 Transition metal dichalcogenides 3.2 Large area growth of 2D materials 3.2.1 Introduction 3.2.1.1 Chemical vapor deposition 3.2.1.2 Metal–organic chemical vapor deposition 3.2.1.3 Molecular beam epitaxy 3.3 Metal–semiconductor contacts and 2D heterostructures 3.4 2D materials for steep slope devices 3.4.1 Band to band carrier tunneling (BTBT) in 2D systems 3.4.2 Tunnel field effect transistors 3.4.3 Resonant tunneling devices/diodes 3.5 Circuit and system applications 3.5.1 RF applications 3.6 List of abbreviations References 4 WSe2 polarity-controllable devices 4.1 Two-dimensional transition metal dichalcogenides 4.1.1 Synthesis of two-dimensional materials 4.1.2 Value of ambipolarity 4.2 Polarity-controllable devices on WSe2 4.3 Quantum transport simulations 4.4 Summary References 5 Carrier type control of MX2 type 2D materials for functionality-enhanced transistors 5.1 MX2 materials 5.1.1 2D materials for FEDs 5.1.2 Crystalline structure and electric characteristics of TMDCs 5.2 MX2 materials in transistors 5.2.1 Need for 2D materials channel in advanced FETs 5.2.2 Carrier doping 5.2.3 Carrier injection via Schottky junctions 5.2.4 Fermi level pinning 5.3 Polarity controllable transistors on MoTe2 5.3.1 Ambipolar channels for polarity controllable transistors 5.3.2 MoTe2 channel 5.3.3 Single top gate device on MoTe2 5.3.4 Dual top-gate device on MoTe2 5.3.5 Issues in top-gate dielectrics 5.4 Enhanced ambipolarity by Schottky junction engineering in MoTe2 5.4.1 Schottky junctions in MoTe2 5.4.2 Barrier heights of MoTe2 Schottky junctions 5.4.3 Enhanced ambipolarity in MoTe2 5.5 Conclusions References 6 Three-independent gate FET\'s super steep subthreshold slope 6.1 Introduction 6.2 Subthreshold slope 6.3 TIGFET background 6.4 TIGFET working principle 6.5 Structure and fabrication of TIGFETs 6.5.1 Device structure and fabrication 6.6 SS dependency in TIGFETs 6.6.1 Experimental dependency on voltage 6.6.2 Origin of voltage dependency 6.6.2.1 Body effect 6.6.2.2 Activation energy 6.6.3 Experimental dependency on temperature 6.6.4 Origin of temperature dependency 6.7 SS behavior from device simulations 6.7.1 TCAD Sentaurus design 6.7.2 SS dependency on long-channel devices 6.7.3 SS dependency on voltage 6.7.4 SS dependency on TIGFET\'s short-channel effects 6.8 Conclusion Acknowledgment References 7 Super sensitive terahertz detectors 7.1 Principles of THz detection in FETs 7.1.1 Dyakonov–Shur model 7.1.2 Theoretical formalism and modes of operation 7.1.3 Nonresonant detection: principles and advantages of subthreshold biasing 7.2 Overview of THz detectors and state of the art 7.2.1 Recent progress on nanowire-based THz detectors 7.2.2 Recent progress on graphene-based THz detectors 7.3 Emerging FET devices for THz detection applications: dual independent gate FinFET with super-steep subthreshold slope 7.3.1 A continuous compact DC model 7.3.2 Noise-equivalent power predictions 7.4 Conclusions References Part II Applications and design techniques of functionality-enhanced devices 8 CNT and SiNW modeling for dual-gate ambipolar logic circuit design 8.1 Desired model characteristics 8.1.1 Connection to underlying physics 8.1.2 Experimental matching 8.1.3 SPICE compatibility 8.1.4 PG modulation 8.1.5 Dynamic polarity switching (interchangeability) 8.2 Single-gate physically derived models 8.2.1 Unipolar SPICE model for ballistic CNTFETs 8.2.2 Unipolar Verilog-A model for doped CNTFETs 8.2.3 Ambipolar VHDL-AMS model for CNTFETs 8.2.4 Experimental matching 8.2.5 Connection to underlying physics 8.2.6 SPICE compatibility 8.2.7 PG modulation 8.2.8 Dynamic polarity switching (interchangeability) 8.3 Behavioral ambipolar models 8.3.1 Ambipolar model for double-independent-gate FinFETs 8.3.2 Ambipolar Verilog-A model for CNTFETs 8.3.3 Connection to underlying physics 8.3.4 Experimental matching 8.3.5 SPICE compatibility 8.3.6 PG modulation 8.3.7 Dynamic polarity switching (interchangeability) 8.4 Comprehensive semiconductor compensation simulation 8.4.1 Ambipolar TCAD simulation for WSe2FETs 8.4.2 Ambipolar TCAD simulation for SiNWFETs 8.4.3 Connection to underlying physics 8.4.4 Experimental matching 8.4.5 SPICE compatibility 8.4.6 PG modulation 8.4.7 Dynamic polarity switching (interchangeability) 8.5 Physical ambipolar models 8.5.1 MATLAB model for multiple-independent-gate FETs 8.5.2 Ambipolar VHDL-AMS model with binary PG for CNTFETs 8.5.3 Ambipolar Verilog-A model for CNTFETs 8.5.4 Ambipolar model for SiNWFETs 8.5.5 Connection to underlying physics 8.5.6 Experimental matching 8.5.7 SPICE compatibility 8.5.8 PG modulation 8.5.9 Dynamic polarity switching (interchangeability) 8.6 Ambipolar models with dynamic polarity 8.6.1 Dynamic Verilog-A model with fixed source and drain for CNTFETs 8.6.2 Dynamic Verilog-A model with source–drain interchangeability for CNTFETs 8.6.3 Connection to underlying physics 8.6.4 Experimental matching 8.6.5 SPICE compatibility 8.6.6 PG modulation 8.6.7 Dynamic polarity switching (interchangeability) 8.7 Summary References 9 Physical design of polarity controllable transistors 9.1 Introduction 9.1.1 IC design and FPGA–ASIC gap 9.1.2 Ambipolar devices for Moore\'s law extension 9.1.3 Physical design objectives 9.2 Background 9.2.1 Structured ASICs 9.2.1.1 General concept 9.2.1.2 Tile granularity 9.2.2 SiNWFET physical design concepts 9.2.2.1 Sea-of-tiles with SiNWFETs 9.2.2.2 Satisfiable SoT (SATSoT) 9.2.2.3 Power routing of ambipolar designs 9.3 SiNWFET tile layout and placement and routing 9.3.1 Tile configuration for FinFETs 9.3.2 Tile configuration for SiNWFETs 9.3.3 Pin and layout generation 9.3.3.1 Intra-tile connection generation 9.3.3.2 Inter-tile connection generation 9.4 SOCE configuration 9.4.1 Placement schemes 9.4.1.1 Standard cell approach 9.4.1.2 Tile cell approach 9.4.2 Power routing schemes 9.4.2.1 Standard cell power routing scheme 9.4.2.2 Tile cell power routing scheme 9.5 Results and comparisons 9.5.1 Benchmarking methodology 9.5.1.1 Benchmark categories 9.5.1.2 Benchmark summary 9.5.1.3 Performance metrics 9.5.2 Benchmark results 9.5.2.1 Results for control and sequential designs 9.5.2.2 Results for arithmetic combinational designs 9.5.3 Comparisons and conclusions 9.5.3.1 Area increase analysis 9.5.3.2 Speed-up analysis 9.5.3.3 Design interconnection analysis 9.5.3.4 Metal distribution analysis 9.5.3.5 Result summary 9.6 Conclusions References 10 BCB benchmarking for three-independent-gate field effect transistors 10.1 Introduction 10.2 TIGFET principles 10.2.1 Generalities 10.2.2 Fabrication techniques 10.2.3 Working principle 10.2.4 Logic behavior 10.3 Device-level considerations 10.3.1 Electrical properties 10.3.2 Capacitance consideration 10.3.3 Layout considerations 10.4 Circuit-level opportunities 10.5 Performance evaluation 10.5.1 Area estimation 10.5.1.1 Area summary 10.5.2 Delay estimation 10.5.3 Energy estimation 10.5.4 Standby power estimation 10.6 Comparison of technologies 10.6.1 Device-level performance 10.6.2 Circuit-level performance 10.6.3 Origin of EDP results 10.7 Conclusion Acknowledgment References 11 Exploratory logic synthesis for multiple independent gate FETs 11.1 Introduction 11.2 Survey on emerging MIGFETs 11.2.1 Double-gate silicon nanowire field effect transistor 11.2.2 Independent-gate-FinFET-LVth 11.2.3 Independent-gate-FinFET-HVth 11.2.4 Triple-gate-floating-gate metal-oxide-semiconductor (MOS) 11.2.5 Triple-gate-silicon nanowire field effect transistor 11.2.6 Logic abstraction and discussion 11.3 Logic synthesis for MIGFETs 11.3.1 Brief overview on logic synthesis 11.3.2 Circuit design considerations 11.3.3 Synthesis methodology 11.4 Experimental results 11.4.1 Methodology 11.4.1.1 Benchmarks MIGFETs 11.4.1.2 Estimation models 11.4.1.3 Synthesis tool 11.4.2 Results 11.4.3 Discussion 11.5 Custom exploration of special MIGFET classes 11.5.1 Potential of XOR MIGFETs 11.5.2 Potential of MAJ MIGFETs 11.5.3 Summary 11.6 Conclusions References 12 Ultrafine grain FPGAs with polarity controllable transistors Abstract 12.1 Background 12.1.1 FPGA architecture 12.1.2 Transistors with controllable polarity 12.1.3 Ultrafine grain reconfigurable logic gates 12.2 Leveraging the ultrafine granularity at the architecture level 12.2.1 Multilayer organization 12.2.2 Intramatrix interconnecting 12.2.3 Integration into FPGA architecture 12.3 MCluster CAD flow 12.3.1 General overview of the flow 12.3.2 MPack: the matrix packer 12.3.3 Matrix mapping algorithm 12.3.3.1 Architectural optimization 12.3.3.2 Mapping algorithm 12.3.4 Clustering algorithm 12.4 Experimental results 12.4.1 Methodology 12.4.2 Impact of the granularity 12.4.3 Performance comparison with CMOS 12.5 Conclusion References 13 Tunnel FET-based security primitive design 13.1 Introduction 13.2 Background 13.2.1 Light-weight cipher 13.2.2 Current mode logic 13.3 Tunnel FET 13.3.1 Device description 13.3.2 Device modeling 13.4 Tunnel FET in hardware security 13.4.1 TFET-based current mode logic 13.4.2 TFET-based CML standard cells 13.4.3 CML implementation on KATAN 13.4.4 Correlation power analysis on KATAN32 13.5 Discussion 13.6 Conclusion Acknowledgment References Index Back Cover