ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Functionalised Cardiovascular Stents

دانلود کتاب استنت های قلبی عروقی عملکردی

Functionalised Cardiovascular Stents

مشخصات کتاب

Functionalised Cardiovascular Stents

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9780081004968, 9780081004982 
ناشر: WP 
سال نشر: 2018 
تعداد صفحات: 370 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 Mb 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Functionalised Cardiovascular Stents به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب استنت های قلبی عروقی عملکردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Content: Front Cover --
Functionalized Cardiovascular Stents --
Copyright --
Contents --
List of contributors --
Preface --
Acknowledgments --
Part One: Fundamentals of cardiovascular stents --
Chapter 1: Overview of cardiovascular stent designs --
1.1 Introduction --
1.2 Percutaneous coronary interventions --
1.2.1 Percutaneous transluminal coronary angioplasty (PTCA) --
1.3 Bare metal stents --
1.3.1 In-stent restenosis --
1.3.2 Stent platform design --
1.3.2.1 Stent construction --
1.3.2.2 Stent geometry --
1.3.2.3 Stent strut thickness --
1.3.2.4 Stent platform materials --
1.4 Drug-eluting stents --
1.4.1 DES design --
1.4.2 DES stent platforms --
1.4.3 DES drugs --
1.4.3.1 Sirolimus --
1.4.3.2 Paclitaxel --
1.4.4 Late-stent thrombosis and the search for better drugs --
1.4.4.1 Limus analogs --
1.4.5 DES drug delivery technologies --
1.4.5.1 Drug release profile --
1.4.5.2 Polymer-controlled drug release --
Permanent polymers --
Degradable polymers --
1.4.5.3 Polymer-free DES --
1.5 Bioresorbable stents --
1.6 Summary of current state of the art and future perspective --
References --
Further Reading --
Chapter 2: Fundamentals of bare-metal stents --
2.1 Clinical study of bare-metal stents --
2.2 Complimentary manufacturing of bare-metal stents --
2.3 Validation of mechanical properties of metals for bare-metal stent --
2.4 Material selection --
2.4.1 Iron and its alloys --
2.4.2 Magnesium and its alloys --
2.4.3 Stainless steel 316L --
2.5 Finite element analysis of stents --
2.6 Conclusions --
References --
Chapter 3: Development of drug-eluting stents (DES) --
3.1 First coronary intervention and development of stents --
3.2 Pathophysiology of restenosis --
3.3 Methods of testing stent performance and their limitations --
3.4 First-generation drug-eluting stents --
3.5 Second-generation DES --
3.5.1 Synthesis of data on currently approved DES. 3.6 Next-generation DES --
3.6.1 Abluminal coating --
3.6.2 Bioresorbable polymers --
3.6.3 Pro-healing stents --
3.6.4 Bioresorbable stents --
3.7 Conclusion --
References --
Chapter 4: Polymer-free drug-eluting stents --
4.1 Introduction --
4.2 Moving beyond polymer controlled stent drug release --
4.2.1 Rationale for polymer-free drug-eluting stents --
4.2.2 Sustained drug release for clinical efficacy --
4.3 Direct coating of drug --
4.4 Stent platform modifications --
4.4.1 Macroporous stents --
4.4.1.1 NEVO stent --
4.4.1.2 Janus Carbostent --
4.4.1.3 Cre8 --
4.4.1.4 Polymer-free drug-filled stent --
4.4.2 Microporous stents --
4.4.2.1 Yukon stent --
4.4.2.2 BioFreedom --
4.4.2.3 YINYI stent --
4.4.2.4 VESTASYNC --
4.4.3 Nanoporous stents --
4.5 Role of stent surface in vessel healing --
4.6 Summary and future perspectives --
References --
Online sources --
Chapter 5: Fundamentals of bioresorbable stents --
5.1 Introduction --
5.1.1 Concept of bioresorbable scaffolds (BRS) --
5.1.2 Current limitations of bioresorbable stents --
5.1.2.1 Insufficient mechanical strength --
5.1.2.2 Lack of radiopacity --
5.2 Current bioresorbable stents technology --
5.2.1 PLLA-based scaffolds --
5.2.1.1 Bioresorption process of PLLA --
5.2.1.2 Abbott vascular BVS --
5.2.1.3 Elixir Medical Corp. DESolve --
5.2.1.4 Amaranth Medical BRS --
5.2.1.5 Manli Cardiology MIRAGE --
5.2.1.6 Other PLLA-based scaffolds --
5.2.2 Other polymeric scaffolds --
5.2.2.1 REVA Medical ReZolve and Fantom --
5.2.2.2 Xenogenics Corp. IDEAL (Xenogenics) --
5.2.3 Biodegradable metallic stents --
5.2.3.1 Magnesium stents --
BIOTRONIK drug-eluting absorbable magnesium scaffolds (DREAMS) --
Envision Scientific BIOLUTE --
5.2.3.2 Iron stents --
Life Tech Scientific iron-based bioresorbable scaffold (IBS) --
5.2.4 Clinical outcomes of the Absorb BVS --
5.3 Future perspectives --
References. Further Reading --
Chapter 6: Bioabsorbable metallic stents --
6.1 Introduction --
6.2 General design criterions of bioabsorbable metallic stents --
6.2.1 Healing procedure of blood vessels --
6.2.2 Desired performance of bioabsorbable metallic stents --
6.3 Development of Mg-based bioabsorbable metallic stents --
6.3.1 The physiological function of Mg --
6.3.2 The mechanical properties of Mg and its alloys --
6.3.3 In vitro testing of Mg-based bioabsorbable metals in cardiovascular applications --
6.3.4 In vivo testing of Mg-based bioabsorbable metallic stents within blood vessel --
6.3.4.1 Animal testing of Mg-based bioabsorbable metallic stents --
6.3.4.2 Clinical testing of Mg-based bioabsorbable metallic stents --
6.4 Development of Fe-based bioabsorbable metallic stents --
6.4.1 The physiological function of Fe --
6.4.2 The mechanical properties of Fe and its alloys --
6.4.3 In vitro testing of Fe-based bioabsorbable metals for cardiovascular application --
6.4.4 Animal testing of Fe-based bioabsorbable metals for cardiovascular application --
6.5 Development of Zn-based bioabsorbable metallic stents --
6.5.1 The physiological function of Zn --
6.5.2 The mechanical properties of Zn and its alloys --
6.5.3 In vitro testing of Zn-based bioabsorbable metals for cardiovascular application --
6.5.4 Animal testing of Zn-based bioabsorbable metals within blood vessel --
6.6 Challenges and opportunities for bioabsorbable metallic stents --
References --
Part Two: Coatings and surface modification of cardiovascular stents --
Chapter 7: Physico-chemical stent surface modifications --
7.1 Introduction --
7.2 Stent surface functionalization --
7.2.1 Polymer functionalized surface --
7.2.2 Metal oxides functionalized surface --
7.2.3 Metal functionalized surface --
7.2.4 Endothelial cells functionalized surface. 7.2.5 Antibody fragments functionalized surface --
7.3 Thiol groups functionalized surface --
7.3.1 Mercaptosilanization procedure --
7.3.2 Spectroscopic characterization of mercaptosilanized surface --
7.3.3 In vitro studies --
7.4 Conclusion --
References --
Chapter 8: Chemical vapor deposition of cardiac stents --
8.1 Introduction --
8.2 Chemical vapor deposition --
8.3 CVD passivation process evaluation --
8.3.1 Passivation by SiC-in-vitro evaluation --
8.3.2 Passivation by SiC-clinical evaluation --
8.4 Discussion --
8.5 Conclusion --
References --
Further Reading --
Chapter 9: Polymer coatings for biocompatibility and reduced nonspecific adsorption --
9.1 Introduction --
9.2 Classification of plasma --
9.2.1 Nonthermal plasma --
9.2.2 Low pressure plasmas --
9.2.2.1 DC glow discharge --
9.2.2.2 Radio frequency discharge --
9.2.2.3 Microwave discharge --
9.2.2.4 Plasma immersion ion implantation (PIII) --
9.2.3 Cold atmospheric pressure plasma --
9.2.3.1 Corona discharge --
9.2.3.2 Dielectric barrier discharge (DBD) --
9.2.3.3 Atmospheric pressure glow discharge (APGD) --
9.2.3.4 Atmospheric pressure plasma jet (APPJ) --
9.3 Added value of nonthermal plasma for stent applications: Polymer coatings --
9.3.1 Poly ethylene glycol (PEG): Antifouling coating --
9.3.2 Heparin: Anticoagulation coatings --
9.3.3 Chitosan: Antimicrobial and antithrombogenic coatings --
9.3.4 Acrylic acid: Cytocompatible coatings --
9.3.5 Diamond like carbon (DLC): Biocompatible coating --
9.3.6 Other biocompatible coatings --
9.4 Conclusion --
Acknowledgments --
References --
Chapter 10: Coating stability for stents --
10.1 Static tests --
10.2 Dynamic tests --
10.3 Adhesion --
10.4 DES and biodegradable polymers --
10.5 Stability tests involving endothelial cells --
10.6 Conclusions and perspectives --
References. Chapter 11: Simple one-step covalent immobilization of bioactive agents without use of chemicals on plasma-activated low t ... --
11.1 Functionalization of stents to improve their clinical performance --
11.1.1 Methods of covalent immobilization of biomolecules on metals --
11.1.2 Chemical linkers and spacers --
11.2 Bioengineering of plasma-activated coatings for stents --
11.2.1 The plasma deposition process --
11.2.2 Mechanically resilient and functional PAC for vascular stents --
11.2.3 Deposition of PAC on stents of varied design and composition --
11.3 Biological properties of PAC coated stents --
11.3.1 Blood compatibility --
11.3.2 Covalent protein immobilization --
11.3.2.1 Tropoelastin --
11.3.2.2 Other ECM proteins --
11.3.3 Bioactive attachment of enzymes --
11.3.4 Summary --
References --
Part Three: Biofunctionalisation of cardiovascular stent surfaces --
Chapter 12: Chemistry of targeted immobilization of biomediators --
12.1 Introduction --
12.2 Targeted immobilization chemistries --
12.2.1 Amine conjugation --
12.2.2 Sulfhydryl-reactive conjugations --
12.2.3 Sialanization --
12.2.4 Reversible addition fragmentation chain transfer --
12.2.5 Chemoselective ligation --
12.3 Future trends --
References --
Chapter 13: Functionalized cardiovascular stents: Cardiovascular stents incorporated with stem cells --
13.1 Introduction --
13.2 Adventitial biology for coronary artery disease (CAD) --
13.2.1 Significance of macrophage in atherosclerotic plaque --
13.2.2 Macrophage-autophagy (MA) dysfunction in atherosclerotic plaque --
13.3 Role of stem/progenitor cells in atherosclerosis --
13.3.1 Migration of BM-SPCs --
13.3.2 Significance of adventitia SPCs --
13.3.3 Mesenchymal stem cells (MSCs) --
13.3.4 Endothelial progenitor cells (EPCs) --
13.4 Current treatment strategies against atherosclerosis.




نظرات کاربران