ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Functional Materials: Preparation, Processing and Applications

دانلود کتاب مواد کاربردی: تهیه، پردازش و کاربرد

Functional Materials: Preparation, Processing and Applications

مشخصات کتاب

Functional Materials: Preparation, Processing and Applications

ویرایش:  
نویسندگان:   
سری: Elsevier Insights 
ISBN (شابک) : 0123851424, 9780123851420 
ناشر: Elsevier 
سال نشر: 2011 
تعداد صفحات: 710 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 39 مگابایت 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Functional Materials: Preparation, Processing and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد کاربردی: تهیه، پردازش و کاربرد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد کاربردی: تهیه، پردازش و کاربرد



مواد کاربردی جایگاه بسیار برجسته ای را در چندین حوزه با تکنولوژی بالا به خود اختصاص داده اند. چنین موادی بر اساس منشاء، ماهیت پیوند یا تکنیک های پردازش طبقه بندی نمی شوند، بلکه بر اساس عملکردهایی که می توانند انجام دهند طبقه بندی می شوند. این یک انحراف قابل توجه از طرح های قبلی است که در آن مواد به عنوان فلزات، آلیاژها، سرامیک ها، پلیمرها، مواد شیشه ای و غیره توصیف می شدند. چندین تکنیک پردازش جدید نیز در گذشته اخیر تکامل یافته اند. به دلیل تنوع مواد و عملکرد آنها، به دست آوردن اطلاعات از منبع واحد بسیار دشوار شده است. مواد کاربردی: آماده سازی، پردازش و کاربردهابررسی جامعی از آخرین پیشرفت ها ارائه می دهد.

  • به عنوان یک مرجع آماده برای محققان شیمی، فیزیک و علم مواد با پوشش دادن یک مورد عمل می کند. طیف گسترده ای از مواد کاربردی در یک کتاب
  • به طراحی مواد جدید با تأکید بر ساختار یا ریزساختار - همبستگی ویژگی کمک می کند
  • پردازش مواد کاربردی را با جزئیات پوشش می دهد، که به مفهوم سازی کمک می کند. کاربردهای آنها

توضیحاتی درمورد کتاب به خارجی

Functional materials have assumed a very prominent position in several high-tech areas. Such materials are not being classified on the basis of their origin, nature of bonding or processing techniques but are classified on the basis of the functions they can perform. This is a significant departure from the earlier schemes in which materials were described as metals, alloys, ceramics, polymers, glass materials etc. Several new processing techniques have also evolved in the recent past. Because of the diversity of materials and their functions it has become extremely difficult to obtain information from single source. Functional Materials: Preparation, Processing and Applications provides a comprehensive review of the latest developments.

  • Serves as a ready reference for Chemistry, Physics and Materials Science researchers by covering a wide range of functional materials in one book
  • Aids in the design of new materials by emphasizing structure or microstructure - property correlation
  • Covers the processing of functional materials in detail, which helps in conceptualizing the applications of them


فهرست مطالب

Copyright......Page 1
About the Editors......Page 2
Functional Materials Preparation, Processing and Applications......Page 5
Contributors......Page 6
4.1 Introduction......Page 9
4.2 Origin of Ferro- and Antiferromagnetism......Page 14
4.3 Origin of Ferroelectricity......Page 16
4.4 Mutually Exclusive Reason for Multiferroicity......Page 20
4.5 Types of Multiferroic Material......Page 21
4.7 Examples......Page 22
4.7.1 Perovskite-Type Materials......Page 24
4.7.2 Composites of Perovskites......Page 27
BiMnO3......Page 29
BiFeO3......Page 32
4.8 Applications......Page 37
References......Page 39
3.1 Introduction......Page 46
3.2.1 Fundamentals of Magnetic Cooling and Heating......Page 48
3.2.3 Relative Cooling Power......Page 50
3.2.4 Magnetocaloric Materials......Page 51
3.2.5 Challenges in Using GMCE Materials in Magnetic Refrigerators......Page 53
3.3.2 Organic–Inorganic Molecular Magnets......Page 54
3.3.3 Inorganic Molecular Magnets......Page 55
3.3.6 Controlling the Magnetic Hardness by Co Substitution in the 䌀漀砀一椀ㄢሀ砀1.5[Fe䌀一6]·zH2O 砀㴀 Ⰰ  ⸀㈀㔀Ⰰ  ⸀㔀Ⰰ  ⸀㜀㔀 愀渀搀 ㄀ PBAs......Page 56
3.3.7 Implications of the Magnetic Pole Reversal Phenomenon in the Cu0.73Mn0.77[Fe䌀一6]·zH2O Molecular Magnetic Compound......Page 59
3.3.8 Thickness- and Stoichiometry-Dependent Magnetic Properties of Electrochemically Prepared Crystalline Thin Films of PBAs KjFeII k[CrIIICN6]l .mH2O......Page 62
3.4.1 Spintronics Materials......Page 65
3.4.2 Nanoparticles for High-Density Magnetic Recording......Page 67
3.4.3 Possible Application in Radionuclide Separation......Page 70
3.4.4 Scope in Biomedical Science......Page 72
3.5 CMR Manganites......Page 77
3.5.1 Study of Ionic Size Effect in Dy-Substituted La0.7Ca0.3MnO3 CMR Perovskite......Page 78
3.6 Summary and Conclusion......Page 85
References......Page 86
1.1.1 Introduction......Page 90
1.1.2 Soft Matter: A Viscoelastic Fluid......Page 91
1.1.3 Shear Modulus and the Energy Density......Page 93
1.2.1 Charge–Charge Interaction......Page 95
1.2.3 Dipole–Dipole Interactions......Page 96
1.2.5 Dipole-Induced Dipole Interaction......Page 97
1.2.8 Hydrophobic Interactions......Page 98
1.2.9 Depletion Interactions......Page 99
1.3.1 Interactions Between Colloidal Particles......Page 100
Electrostatic Forces Between Surfaces......Page 101
1.3.2 DLVO Theory of Colloid Stability......Page 102
1.4.1 Surface Tension and Surface Activity......Page 103
1.4.2 Surfactant Aggregation and Hydrophobic Effect......Page 105
1.4.3 Thermodynamics of Micelle Formation......Page 106
1.4.4 Dynamics of Micelle Formation......Page 107
1.4.5 Phase Behaviour of Surfactants......Page 108
1.4.6 Packing Parameter and Bending Rigidity......Page 109
1.5.1 Introduction......Page 111
1.5.2 Conformations of Polymer Chains......Page 112
1.5.3 Size of a Freely Jointed Chain......Page 113
1.5.4 Size of an Ideal Chain with Fixed Bond Angle......Page 114
1.5.6 Polymer Gels......Page 115
Classical Theory or Flory–Stockmayer Model......Page 116
Percolation Theory......Page 117
1.5.8 Polyelectrolytes and Counterion Condensation......Page 118
Counterion condensation......Page 119
1.6 Experimental Techniques in Soft Matter......Page 121
Static Light Scattering......Page 122
Dynamic Light Scattering......Page 125
Contrast Factor......Page 128
Guinier Approximation......Page 129
Determination of Interparticle Structure Factor......Page 130
Small-Angle X-Ray Scattering......Page 131
Cryo-Transmission Electron Microscope......Page 132
1.6.3 Rheology......Page 133
1.7 Applications of Soft Matter......Page 135
1.7.1 Stimuli Responsive Materials......Page 136
1.7.2 Soft Materials in Drug Delivery......Page 138
1.7.3 Nanotechnology Using Soft Materials......Page 141
1.7.4 Oil Field Applications......Page 142
References......Page 143
6 Functionalized Magnetic Nanoparticles: Concepts, Synthesis and Application in Cancer Hyperthermia......Page 149
6.1 Introduction......Page 151
Other Deposition Methods......Page 155
Sonication......Page 156
Metallic Magnetic Nanoparticles......Page 157
FePd Nanoparticles......Page 158
6.3.1 Size and Crystallinity of Nanoparticles......Page 159
XRD......Page 160
TEM......Page 161
6.3.3 Magnetic Behaviour......Page 164
6.3.4 Induction Heating......Page 165
6.4.2 Co Nanoparticles......Page 168
6.4.4 CoNi Particles......Page 169
6.4.6 Fe3O4 Particles......Page 170
6.5.1 Fe3O4 Magnetic Nanoparticles Capped with OA and PEG 匀攀洀椀挀漀渀搀甀挀琀漀爀⼀䤀渀猀甀氀愀琀漀爀 䴀愀最渀攀琀椀挀......Page 171
6.5.3 Ag, Pt, Au, Ti, Al Particles 䴀攀琀愀氀氀椀挀 一漀渀ⴀ䴀愀最渀攀琀椀挀......Page 172
6.6 Therapeutic Efficacy of Magnetic Nanoparticles in Human Cancer Cells......Page 173
Acknowledgements......Page 176
References......Page 177
5.1 Introduction......Page 181
5.2 Ferromagnetic Semiconductors or Dilute Magnetic Semiconductors......Page 182
5.3 Spintronics......Page 183
5.3.1 Physics Aspects......Page 184
5.4.1 䜀愀Ⰰ䴀渀As......Page 186
5.4.2 䜀愀Ⰰ䴀渀N......Page 187
5.5.1 TiO2-Based DMS......Page 188
5.5.3 Co-doped ZnO......Page 190
5.5.4 Mn-Doped ZnO......Page 192
5.6.3 Gel-Combustion......Page 194
5.6.6 Ink Formulation and Piezoelectric Drop on Demand 䐀伀䐀 Inkjet Printing......Page 195
5.8.2 Nanoparticles of Co-Based ZnO System......Page 196
5.8.3 Mn-Based ZnO Nanostructure......Page 197
5.8.4 Mn-Based ZnO Films by PLD......Page 198
5.8.5 Mn- or Co-Doped ZnO Film and Patterns Developed by Inkjet Printing......Page 199
5.9.1 Co-Doped ZnO with Li Co-Doping......Page 202
5.9.2 Ni-Doped ZnO with Li Co-Doping......Page 205
5.9.3 Fe-Doped In2O3 Nanoparticles......Page 206
5.10.1 GMR/Spin Valve......Page 208
5.10.2 MTJs and MRAM......Page 209
5.10.3 Spin-FET......Page 210
References......Page 211
2.1 Introduction......Page 217
2.2 Synthesis of Conducting Polymers......Page 219
2.2.1 Synthesis of Bulk and Fibre Polyindole......Page 220
2.2.2 Synthesis of Crystalline Polyaniline......Page 225
2.2.3 Films of Conducting Polymers......Page 228
2.3.1 Configuration of Chemiresistor Sensors......Page 229
2.3.2 Polycarbazole Langmuir–Blodgett Film-Based Sensors......Page 231
2.3.3 Polyaniline Nanofibre Sensors......Page 234
2.3.4 Composite Poly㌀ⴀ栀攀砀礀氀琀栀椀漀瀀栀攀渀攀:ZnO-Nanowire-Based NO2 Sensors......Page 237
2.3.5 Composite Polypyrrole:ZnO-Nanowire-Based Chlorine Sensor......Page 242
2.4 Electrochemical Actuators......Page 247
2.4.2 PPy-DBS/Au Free-standing Film as Actuator......Page 248
2.5 Conducting Polymer FETs......Page 250
2.5.1 Fabrication of Top-Contact FET......Page 252
2.5.2 Characteristics of P3HT Active Layer......Page 253
2.5.3 Transistor Characteristics of P3HT Active Layer......Page 255
2.6 Summary......Page 257
References......Page 258
10.1 Introduction......Page 267
10.2 Types of Fuel Material......Page 270
10.2.1 Fuel Designs......Page 274
10.2.2 Metallic Fuels......Page 276
Oxide Fuels......Page 277
Carbides and Nitrides......Page 278
10.2.5 Fuels for Organic Cooled Reactors......Page 279
10.2.7 Fuel for High-Temperature Gas-Cooled Reactors......Page 280
10.2.8 Hydride Fuel with a Liquid–Metal Bond......Page 282
10.2.10 Transmutation Fuels......Page 283
U–O System......Page 284
U–Pu–O System......Page 285
Advanced Fuels......Page 287
U–C System......Page 288
U–Pu–C System......Page 289
U–Zr System......Page 290
U–Pu System......Page 291
10.3.2 Defect Structure in Non-Stoichiometric Oxides......Page 292
10.3.3 Oxygen Potential......Page 293
10.4.1 Fission Gases......Page 295
10.4.4 Knock Out Mechanism......Page 298
10.4.5 Thermal Mechanism......Page 299
10.4.6 FGR from MOX Fuels......Page 301
10.4.8 Fast-Reactor Metal Fuels......Page 302
10.4.9 Advanced Fuels......Page 303
Gas Accumulation in Grain Boundary Bubbles......Page 304
Breakway Gas Release Due to Bubble Interconnection......Page 305
Sweeping of Gas Bubbles by Grain Boundaries......Page 306
10.5 Vapourisation of the Fuel......Page 307
10.5.1 Actinide Distribution......Page 308
10.5.2 Oxide Distribution......Page 309
10.6.1 Nucleation of Fission Gas Bubbles......Page 311
10.6.2 Growth of Stationary Bubbles......Page 312
10.6.3 Migration Mechanisms......Page 313
Trapping......Page 314
10.6.5 Resolution......Page 315
10.7.1 Physical State of FPs......Page 316
10.7.2 Chemical State of FPs......Page 317
10.7.3 Fission Product Migration......Page 318
10.7.4 Fuel–Clad Interactions......Page 319
10.8.1 Pore Migration by Vapour Transport Mechanism......Page 321
10.8.2 Porosity Distribution......Page 322
References......Page 342
11.2 Origin of Modulus......Page 347
11.2.1 Melting Temperature–Bond Energy Relation......Page 349
11.2.2 Elastic Modulus–Bond Energy Relation......Page 350
11.3.2 Strength–Ductility Relation......Page 352
11.3.3 Limits of Strength......Page 353
11.3.4 Conventional Methods to Achieve High Strength......Page 354
Strain Hardening......Page 355
Solid–Solution Strengthening......Page 356
Precipitate and Dispersion Strengthening......Page 357
Strengthening by Phase Transformation......Page 358
11.3.5 Toughness......Page 359
11.4 Ultra-strength......Page 362
Refining Grain Size......Page 364
Nanotwins......Page 366
Bainitic Ferrite Steels......Page 369
Ultra-strong Aluminium Alloys......Page 370
Nanopillars......Page 371
Carbon Nanotubes......Page 372
Nanocomposites......Page 373
Intermetallic Compounds......Page 375
Bulk Metallic Glasses......Page 377
Low-Modulus, High-Strength Dislocation-Free Alloy......Page 379
11.5 Summary......Page 381
References......Page 383
7.1 Background......Page 386
7.2 Niobium Titanium 一戀吀椀......Page 390
7.3 A15 Superconductors and Nb3Sn......Page 392
7.4 Chevrel-Phase Superconductors......Page 394
7.5 High-Tc Superconductors......Page 395
7.5.1 BiSrCaCuO or BSCCO......Page 397
7.5.2 YBCO Coated Conductors......Page 398
7.6 MgB2......Page 399
7.7 Borocarbides......Page 402
7.8 Iron Arsenide Superconductors......Page 403
7.9 Conclusions......Page 404
References......Page 405
12.1 Introduction......Page 410
12.2 Materials Resistant to Uniform Corrosion......Page 414
12.2.1 Additional Requirements from Corrosion-Resistant Materials......Page 415
Alloying Additions to Resist Pitting Corrosion......Page 416
Resistance to Pitting in Acids......Page 419
Resistance to Crevice Corrosion......Page 420
Other Non-Ferrous Alloys......Page 421
12.3.2 Materials Resistant to Selective Leaching......Page 423
Austenitic Stainless Steels......Page 424
Ferritic Stainless Steels......Page 426
Nickel-Based Alloys......Page 427
Grain Boundary Engineering......Page 428
Non-Ferrous Alloys......Page 429
Austenitic Stainless Steels......Page 430
Grain Boundary Engineering......Page 432
12.3.5 Materials Resistant to Hydrogen Damage......Page 433
12.3.6 Materials Resistant to FAC......Page 435
12.3.7 Materials Resistant to Erosion Corrosion......Page 437
12.3.8 Materials Resistant to Oxidation Corrosion......Page 439
High-Temperature Corrosion......Page 442
References......Page 444
17.1 Introduction......Page 451
17.2 Fullerene......Page 452
17.2.2 Mechanism of Fullerene Formation......Page 453
17.2.4 Applications......Page 454
17.3.1 Different Types of CNT......Page 455
17.3.3 Synthesis......Page 457
Chemical Vapour Deposition......Page 458
17.3.4 Mechanism of CNT Deposition......Page 459
17.3.6 Application......Page 460
17.4 Graphene: The Slimmest Carbon......Page 462
Microscopy......Page 466
Spectroscopy......Page 467
Diffraction Technique......Page 468
17.5 Nano-Diamond......Page 469
17.6 Carbon Nanofoam......Page 470
17.7.1 Amorphous Carbon for Nuclear Applications......Page 471
17.7.2 Thin Films of Amorphous Carbon......Page 472
CVD of Diamond-Like Amorphous Carbon Films......Page 473
Electro-Deposition of Diamond-Like Amorphous Carbon Films......Page 474
Electro-Deposition of Nitrogenated Amorphous Carbon Films......Page 475
References......Page 476
13.1.2 Membrane Separations......Page 483
13.1.3 Solid Membranes......Page 484
13.2.1 Synthesis......Page 487
13.2.2 Models of Morphology......Page 488
Diffraction Studies......Page 491
Microscopic Studies......Page 494
13.3.1 Mechanical Properties......Page 495
13.3.2 Sorption Properties......Page 496
13.3.3 Ion-Exchange Properties......Page 499
13.4.1 Applications in the Chlor-Alkali Industries......Page 501
13.4.2 Fuel Cell Applications......Page 502
Methanolic Fuel Cells......Page 504
13.4.3 Catalytic Applications......Page 505
13.5 Conclusions......Page 506
References......Page 507
14.1.1 Background......Page 512
14.2 Basis of Photocatalytic Water Splitting......Page 514
14.2.1 Principle of Photocatalytic Water Splitting......Page 515
14.2.2 Scheme of Photocatalytic Water Splitting Reaction......Page 516
14.2.3 Stoichiometry of H2 and O2 Evolution......Page 517
14.2.5 Effect of Crystallinity and Surface Area on Photocatalytic Activity......Page 518
14.3.1 Experimental Setup......Page 519
14.3.3 Quantum Yield......Page 521
14.4 Some Heterogeneous Photocatalyst Materials Used for Water Splitting......Page 522
14.4.1 Oxide Photocatalyst Consisting of d0 Metal Cation......Page 523
14.4.2 Oxide photocatalyst consisting of d10 metal cations......Page 525
14.4.3 Photocatalytic Activities of Ternary In2TiO5 Nanoparticles......Page 526
Band-Gap Estimation......Page 527
Effect of A/B-Site Substitution on Photoactivity of Indium Titanates......Page 530
B-Site Substitution: In2Ti1−xFexO5−δ......Page 532
References......Page 535
15.1 Introduction......Page 540
What are Reversible Hydrides?......Page 542
Hydrogen Storage in Intermetallic Compounds......Page 543
Mechanism of Hydrogen Absorption in Metals......Page 544
Pressure–Composition–Temperature 倠ጀ䌠ጀ吀 Isotherm......Page 545
Hysteresis......Page 547
15.1.3 Light-Metal-Based Hydrides......Page 548
15.1.4 Chemical Hydrides 䌀漀洀瀀氀攀砀 䠀礀搀爀椀搀攀猀......Page 549
15.1.5 Hydrogen Adsorption in Nanostructured Materials......Page 550
15.2.1 Alloy Preparation......Page 551
15.2.4 Electrochemical Charging......Page 552
15.2.5 Activation Process......Page 553
15.3.1 Effect of Hydrogen Absorption on the Structure of CeNiAl......Page 554
15.3.2 Hydrogen-Induced Amorphization......Page 556
15.3.3 Structure and Magnetic Properties of UPdIn Deuteride......Page 557
15.3.4 Hydrogen Absorption Properties of Ti–V–Fe-Based Systems......Page 559
15.4 Applications......Page 562
15.4.2 Discharge......Page 563
References......Page 565
8.2 Origin of Different Types of Optical Material and their Applications......Page 571
8.3.1 Refractive Index 渀......Page 573
8.3.4 Intensity of Light......Page 574
8.4 Optical Properties of Metals......Page 575
8.5.1 Luminescent Lead Silicate Glasses Containing Alkali Oxides......Page 577
8.5.2 Optical Properties of ZnO–P2O5 Glasses......Page 581
8.5.3 Optical Properties of Lanthanide-Ion-Doped Glasses......Page 583
8.6.1 Metal Nanoparticles......Page 586
8.6.2 Host Emissions from Nanomaterials......Page 588
8.6.3 Luminescence from ZnGa2O4 Nanoparticles......Page 589
8.6.4 Luminescence from Sb2O3 Nanorods......Page 590
8.6.5 Optical Properties of Lanthanide-Ion-Doped Nanomaterials......Page 591
8.7 Nonlinear Optical Materials......Page 596
8.7.1 Z-Scan Technique......Page 597
8.7.2 Evaluation of n2 Values......Page 598
8.7.3 Evaluation of β Values......Page 599
8.7.4.4 Optical Parametric Amplification 伀倀䄀......Page 600
8.7.5 Glasses as Nonlinear Optical Materials......Page 601
Nonlinear Susceptibilities......Page 602
8.8 Organic Optical Materials......Page 603
8.9 Photonic Band-Gap Materials......Page 604
References......Page 606
9.1 Introduction......Page 609
9.2 Glasses......Page 610
9.2.1 The Glass Transition......Page 611
9.2.2 Time–Temperature Transformation Diagram......Page 613
9.2.3 Nucleation and Growth of Crystals in Under-Cooled Melt of Bulk Glass-Forming Alloys......Page 614
9.3 Glass-Ceramics......Page 617
9.4.1 Techniques......Page 619
Melt Quenching......Page 620
Sputtering......Page 621
Sol–Gel Method......Page 622
Radiation Bombardment......Page 623
9.5.2 Differential Thermal Analysis......Page 624
9.5.3 Differential Scanning Calorimetry......Page 626
9.5.4 Thermo-Mechanical Analysis 吀䴀䄀......Page 627
9.6.1 Microhardness......Page 628
9.7 Wetting Property......Page 630
9.7.2 X-Ray Diffraction......Page 635
9.7.3 Optical Transmission......Page 637
9.7.4 Fourier Transform Infrared Spectroscopy 䘀吀䤀刀......Page 638
9.7.5 Raman Spectroscopy......Page 640
9.7.6 Solid-State NMR Spectroscopy......Page 641
Cross Polarization 䌀倀 NMR......Page 642
9.7.7 Scanning Electron Microscopy......Page 643
9.8 Some Useful Properties......Page 644
9.10.1 Optical Fibres......Page 646
9.10.3 Optical Components......Page 647
9.10.4 Host for Laser Emitters......Page 649
9.10.7 Sealants......Page 650
9.10.8 Biomedical Uses......Page 654
9.10.9 Matrices to Contain Radioactive Waste......Page 658
9.10.10 Bulk Metallic Glasses......Page 659
9.10.11 Thermal Stability of Zr-Based Metallic Glass......Page 660
References......Page 662
16.1 Introduction......Page 673
16.2.1 Materials for Ceramic Fuel Cells......Page 678
Synthesis of Ceramic Fuel Cell Components......Page 680
Processing of Materials for Ceramic Fuel Cells......Page 685
Synthesis of Materials for Li-Ion Batteries......Page 688
Processing of Materials for Lithium-Ion Batteries......Page 690
16.2.3 Materials for Sensors......Page 691
Synthesis of Sensor Materials......Page 692
Processing of Materials for Sensor Applications......Page 693
Electrical Conductivity of Cathode Materials......Page 694
Electrochemical Characterization of Electrolytes......Page 697
Electrical Conductivity and Microstructure of Anodes......Page 700
16.3.2 Electrochemical Characterization of Materials for Batteries......Page 702
16.4.1 Fuel Cells......Page 703
16.4.3 Sensors......Page 704
References......Page 705
Preface......Page 709




نظرات کاربران