ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Functional Materials for the Oil and Gas Industry: Characterization and Applications (Emerging Trends and Technologies in Petroleum Engineering)

دانلود کتاب مواد کاربردی برای صنعت نفت و گاز: خصوصیات و کاربردها (روندها و فناوری های نوظهور در مهندسی نفت)

Functional Materials for the Oil and Gas Industry: Characterization and Applications (Emerging Trends and Technologies in Petroleum Engineering)

مشخصات کتاب

Functional Materials for the Oil and Gas Industry: Characterization and Applications (Emerging Trends and Technologies in Petroleum Engineering)

ویرایش: [1 ed.] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 1032151005, 9781032151007 
ناشر: CRC Press 
سال نشر: 2023 
تعداد صفحات: 222
[243] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 34 Mb 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Functional Materials for the Oil and Gas Industry: Characterization and Applications (Emerging Trends and Technologies in Petroleum Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد کاربردی برای صنعت نفت و گاز: خصوصیات و کاربردها (روندها و فناوری های نوظهور در مهندسی نفت) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد کاربردی برای صنعت نفت و گاز: خصوصیات و کاربردها (روندها و فناوری های نوظهور در مهندسی نفت)

این کتاب به بررسی آخرین تکنیک ها در شناسایی و کاربردهای مواد کاربردی در صنعت نفت و گاز می پردازد. این پیشرفت‌ها در سرامیک‌ها، کامپوزیت‌ها و آلیاژها را بررسی می‌کند و جنبه‌های اصلی مرتبط با صنعت، از جمله مدیریت دارایی، عملیات، تصفیه، و کاربردها در محیط‌های شدید را پوشش می‌دهد.


توضیحاتی درمورد کتاب به خارجی

This book discusses the latest techniques in characterization and applications of functional materials in the oil and gas industry. It reviews developments in ceramics, composites, and alloys and covers major aspects relevant to the industry, including asset management, operation, purification, and applications in extreme environments.



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Acknowledgments
Editors
Contributors
Chapter 1 Introduction to Functional Materials: Synthesis, Properties, Environmental Sustainability, and General Applications
	Abbreviations
	1.1 Introduction
	1.2 Features and Properties
	1.3 Types of Nanomaterials
	1.4 Nanomaterials and their Types
		1.4.1 Conventional Nanoparticles
			1.4.1.1 Carbon-Based
			1.4.1.2 Metallic
			1.4.1.3 Metal Oxide
			1.4.1.4 Functionalized Nanoparticles
			1.4.1.5 Core-Shell
		1.4.2 Nanostructured Materials
			1.4.2.1 Bimetallic and Janus Nanoparticles
			1.4.2.2 Nano-Metal-Organic Frameworks
		1.4.3 Other Functional Materials
			1.4.3.1 Hydrogels and Aerogels
	1.5 Synthesis of Advanced Functional Materials
		1.5.1 Top-Down Approach
		1.5.2 Bottom-Up Approach
		1.5.3 Emerging and Sustainable Routes for the Functional Nanoparticles Synthesis
			1.5.3.1 Green Synthesis
			1.5.3.2 Nanoparticle Synthesis From Waste
	1.6 Surface Treatment and Functionalization Strategies
	1.7 Applications
		1.7.1 Kinetic Promoter in CO[sub(2)] Sequestration
		1.7.2 Stimulation of Biofuels Production
		1.7.3 Heat Transfer Agents in Thermal Application
		1.7.4 Wastewater Treatment
		1.7.5 Kinetic Promoter in Extraction and Production of Chemicals
		1.7.6 Corrosion Inhibitor
		1.7.7 Chemical and Biological Sensing
	1.8 Conclusion
	References
Chapter 2 Application of Functional Materials and Corrosion Inhibitors for Downstream Offshore Oil and Gas Industry
	Abbreviations
	2.1 Functional Material for H[sub(2)]S Treatment
	2.2 Functional Materials for H[sub(2)]S Adsorption
	2.3 Synthesis and Characterization
	2.4 Functional Materials for H[sub(2)]S Oxidation
	2.5 Functional Materials for H[sub(2)]S Valorization
	2.6 Sustainable Green Inhibitors for Offshore Oil and Gas Facilities
		2.6.1 Chitosan Schiff Bases
		2.6.2 Chitosan Polymeric Salts
		2.6.3 PEG Cross-Linked Chitosan
		2.6.4 Carboxymethyl Hydroxypropyl Chitosan
		2.6.5 Acid Grafted Chitosan
		2.6.6 Biomaterial Grafted Chitosan
		2.6.7 Triazole-Modified Chitosan
		2.6.8 Plant Extract
	2.7 Offshore Oil and Gas Industry Functional Materials Challenges, Prospects, and Conclusion
	References
Chapter 3 Application of Functional Ceramics in Oil and Gas Industries: Properties and Current Status
	Abbreviations
	3.1 Introduction
	3.2 Ceramic Materials for Oil and Gas Industries
		3.2.1 Carbon Graphite Materials for the Oil and Gas Industries
	3.3 Challenges Due to Corrosion Issues in Oil and Gas Industries
		3.3.1 Ceramic Coatings in Oil and Gas Industries
			3.3.1.1 Challenges with Ceramic Coatings
		3.3.2 Functional Ceramic/Polymer Nanocomposites for the Oil and Gas Industries
	3.4 Outlook
		3.4.1 Ceramic Sensors for Oil and Gas Sectors
		3.4.2 Wastewater Treatment for Oil and Gas Sectors
		3.4.3 Anti-fouling Ceramic Materials for Oil and Gas Sectors
	3.5 Conclusion
	References
Chapter 4 Understanding the Adsorption Behaviour of Corrosion Inhibitors on Metal–Water and Air–Water Interfaces From Molecular Simulations
	Abbreviations
	4.1 Introduction
	4.2 Free Energies in Different States
		4.2.1 Adsorption Free Energy in Infinite Dilution
		4.2.2 Adsorption Free Energy of Inhibitor Micelles
	4.3 Adsorption Morphology of bda-12 Molecules
	4.4 Adsorption Morphology of bda-4 Molecules
	4.5 Adsorption Morphology of Decanethiol Molecules
	4.6 Adsorption Morphology of an Equimolar Mixture of bda-12 and pe-12 Molecules
	4.7 Free Energy of Inhibitors Across Air–Water Interfaces
	4.8 Micellization Tendency of Quat-10-OH Molecules
	4.9 Conclusion
	Acknowledgments
	References
Chapter 5 Application of Modern Functional Materials in Petroleum Exploration and Process Development
	Abbreviations
	5.1 Introduction
	5.2 EOR Mechanisms
		5.2.1 Nanofluids
			5.2.1.1 Pore Channel Plugging
			5.2.1.2 Disjoining Pressure
			5.2.1.3 Mobility Ratio
			5.2.1.4 Interfacial Tension Reduction
			5.2.1.5 Wettability Alteration
			5.2.1.6 Prevention of Asphaltene Precipitation
		5.2.2 Nanoemulsions
		5.2.3 Nanocatalysts
	5.3 Energy Extraction From Gas Hydrate Using Nanoparticle
	5.4 Oceanic CO[sub(2)] Sequestration
	5.5 Conclusion
	References
Chapter 6 Application of Self-Cleaning Materials in the Oil and Gas Industries
	Abbreviations
	6.1 Introduction
	6.2 Wettability and Models for Superhydrophobic Surfaces
		6.2.1 Young's Model
		6.2.2 Cassie Model
		6.2.3 Wenzel Model
		6.2.4 Cassie-Baxter Model
	6.3 Nature's Patterns of Self-Cleaning
		6.3.1 Lotus Effect
		6.3.2 Rice Leaves
		6.3.3 Butterfly Wings and Peacock Feather
		6.3.4 Water Strider Legs and Insect Compound Eyes
	6.4 Materials and Mechanism to Produce Hydrophobic and Superhydrophobic Coatings
		6.4.1 Making a Rough Surface and Modifying the Surface with a Material of Low Surface Energy
			6.4.1.1 Wet Chemical Reaction and Hydrothermal Reaction
			6.4.1.2 Electrochemical Deposition
			6.4.1.3 Lithography
			6.4.1.4 Electrospinning Technique
			6.4.1.5 Etching and CVD
			6.4.1.6 Sol – Gel Method and Polymerization Reaction
			6.4.1.7 Self-Assembly and Layer-by-Layer (LBL) Methods
		6.4.2 Roughening the Surface of Low-Surface-Energy Material
			6.4.2.1 Fluorocarbons
			6.4.2.2 Organic Materials
			6.4.2.3 Inorganic Materials
			6.4.2.4 Silicones
	6.5 Characterization Techniques
	6.6 Applications of Superhydrophobic Coatings for Pipelines
		6.6.1 Self-Cleaning
		6.6.2 Anti-Biofouling
		6.6.3 Anti-Corrosion
		6.6.4 Anti-Icing
		6.6.5 Other Significant Applications
			6.6.5.1 Superhydrophobic Coatings in Glasses
			6.6.5.2 Superhydrophobic Coatings in Textiles
			6.6.5.3 Superhydrophobic Coatings on Vehicles
			6.6.5.4 Superhydrophobic Coatings on Building Walls
	6.7 Challenges and Future Outlook
	6.8 Conclusion
	References
Chapter 7 Microstructural and Chemical Characterization Techniques of Coatings: State of the Arts
	Abbreviations
	7.1 Introduction
	7.2 Features and Properties of Thin-Film Coating
	7.3 Types of Coating
	7.4 Methodologies
	7.5 Advanced Characterization Techniques for Thin-Film Coatings
	7.6 Coated Nanoparticles
		7.6.1 Functional Groups Immobilized Nanoparticles
		7.6.2 Core-Shell Nanoparticles
		7.6.3 Organic Coated Core-Shell NPs
		7.6.4 Inorganic Coated Core-Shell NPs
		7.6.5 Core-Corona-Canopy System
	7.7 Advance Characterization Techniques for Coated Nanoparticles
	7.8 Future Prospects
	7.9 Conclusion
	References
Chapter 8 Corrosion Under Insulation (CUI) in Oil and Gas Industries
	Abbreviation
	8.1 Introduction
	8.2 Insulation Materials
		8.2.1 Glass Wool
			8.2.1.1 Temperature Range
		8.2.2 Rockwool/Mineral Wool
			8.2.2.1 Loose Mineral Wool
	8.3 Corrosion Under Insulation (CUI)
		8.3.1 Factors Affecting the CUI
	8.4 Non-Destructive Techniques (NDT)
		8.4.1 Infrared Thermography
		8.4.2 Radiography
		8.4.3 Other Important Techniques
	8.5 The Temperature Range for Corrosion Under Insulation (CUI)
	8.6 Outlook and Prospects
	8.7 Conclusion
	References
Chapter 9 Application of Functional Ceramics in Oil and Gas Industries: Manufacturing, Properties, and Current Status
	Abbreviations
	9.1 Introduction
		9.1.1 Properties of the Refractories
			9.1.1.1 Specific Gravity
			9.1.1.2 Bulk Density
			9.1.1.3 Apparent Porosity
			9.1.1.4 Permeability
	9.2 Classification of Refractories
	9.3 Manufacturing of Refractories
		9.3.1 Shaped Refractories
			9.3.1.1 Silica Refractories
			9.3.1.2 Aluminosilicate Refractories
			9.3.1.3 Fireclay Refractories
			9.3.1.4 Alumina Refractories
		9.3.2 Unshaped Refractories
			9.3.2.1 Mortars
			9.3.2.2 Ramming Masses
			9.3.2.3 Castables
		9.3.3 Advantages and Industrial Applications
		9.3.4 Limitations of Applications of Shaped Refractories in Industries
	9.4 Installation of Refractories
		9.4.1 Installation of Shaped Refractories
		9.4.2 Monolithic Refractories Installation
	9.5 Preheating of Refractories
	9.6 Preheating of Castables
	9.7 Refractories in Petroleum Refineries
		9.7.1 Fluid Catalytic Cracking Unit
		9.7.2 Sulfur Recovery Unit
		9.7.3 Selection of Refractories
	9.8 Refractory Performance and Mechanism of Damage
	9.9 Conclusion
	References
Chapter 10 Recent Progress in Superhydrophobic Macroporous Sorbents for Oil Spill Remediation
	Abbreviations
	10.1 Introduction
	10.2 Wettability and Nonwettability: Fundamental Concept of Contact Angle and Superhydrophobicity
	10.3 Fabrication Strategies of Macroporous Sorbents for Oil Spill Remediation
		10.3.1 Dip Coating
		10.3.2 Wet Chemical Method
		10.3.3 Chemical Vapor Deposition (CVD)
		10.3.4 Hydrothermal and Sol-Gel Method
	10.4 Oil Spill Remediation Using Superhydrophobic-Superoleophilic Macroporous Sorbents
		10.4.1 Carbon-Based Macroporous Sorbents
		10.4.2 Polyurethane Sponge-Based Macroporous Sorbents
		10.4.3 Melamine Sponge-Based Macroporous Sorbents
		10.4.4 Other Macroporous Sorbents
	10.5 Filtration Membrane Technologies for Selective Separation
	10.6 Conclusions and Prospects
	References
Chapter 11 Materials for Renewable Energy Resources for Oil and Gas Industries
	Abbreviations
	11.1 Introduction
	11.2 Oil and Gas Industry Status
	11.3 Ongoing Trend and Potential Opportunities
		11.3.1 Reduction of High-Quality Oil Reserves
		11.3.2 Environmental Impact Caused by the Industries
		11.3.3 Declining Renewable Energy Cost
		11.3.4 Renewable Energy Options for the Oil Industries
	11.4 Renewable Energy Options for the Gas Industries
	11.5 Bioenergy for Fuels
	11.6 Alternatives for Oil and Gas Energy
		11.6.1 Substitution of Renewable Technology in Production Stage
		11.6.2 Renewable Alternative in Primary Stage
		11.6.3 Renewable Substitution in Secondary Phase of Oil Recovery
		11.6.4 Renewable Substitution for Tertiary Phase of Oil Recovery
		11.6.5 Substitution of Renewable Technology in Mid-Stream Stage
		11.6.6 Compressor Electrification
		11.6.7 Compressor Heat Recovery
		11.6.8 Turboexpanders
	11.7 Substitution of Renewable Technology in Downstream Stage
		11.7.1 In Generation of Heat and Power
		11.7.2 Production of Hydrogen
		11.7.3 For Power Cogeneration
	11.8 Prospects of Greener Fuel
	11.9 Conclusion
	References
Chapter 12 Functional Clay Minerals Application in Oil and Gas Industries
	Abbreviations
	12.1 Introduction
	12.2 Functions of Clay
	12.3 Adsorption Characteristics of Petroleum Fractions on Clays
	12.4 Reservoir Quality in Clay Presence
	12.5 Clay Minerals in Gas Sorption and Carbon Sequestration
	12.6 Functional Clay Minerals for Oil and Gas Wastewater Treatment
		12.6.1 Benzene, Toluene, and Xylene
		12.6.2 Phenolic Compounds
		12.6.3 Heavy Metals
		12.6.4 Heavy Metal Removal by the Smectite Group
	12.7 Challenges and Future Perspectives
	12.8 Clay Minerals as Additives for Oil/Gas Drilling
	References
Index




نظرات کاربران