دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Deepak Dwivedi (editor), Amit Ranjan (editor), Jitendra S. Sangwai (editor) سری: ISBN (شابک) : 1032151005, 9781032151007 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 222 [243] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 34 Mb
در صورت تبدیل فایل کتاب Functional Materials for the Oil and Gas Industry: Characterization and Applications (Emerging Trends and Technologies in Petroleum Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد کاربردی برای صنعت نفت و گاز: خصوصیات و کاربردها (روندها و فناوری های نوظهور در مهندسی نفت) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به بررسی آخرین تکنیک ها در شناسایی و کاربردهای مواد کاربردی در صنعت نفت و گاز می پردازد. این پیشرفتها در سرامیکها، کامپوزیتها و آلیاژها را بررسی میکند و جنبههای اصلی مرتبط با صنعت، از جمله مدیریت دارایی، عملیات، تصفیه، و کاربردها در محیطهای شدید را پوشش میدهد.
This book discusses the latest techniques in characterization and applications of functional materials in the oil and gas industry. It reviews developments in ceramics, composites, and alloys and covers major aspects relevant to the industry, including asset management, operation, purification, and applications in extreme environments.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments Editors Contributors Chapter 1 Introduction to Functional Materials: Synthesis, Properties, Environmental Sustainability, and General Applications Abbreviations 1.1 Introduction 1.2 Features and Properties 1.3 Types of Nanomaterials 1.4 Nanomaterials and their Types 1.4.1 Conventional Nanoparticles 1.4.1.1 Carbon-Based 1.4.1.2 Metallic 1.4.1.3 Metal Oxide 1.4.1.4 Functionalized Nanoparticles 1.4.1.5 Core-Shell 1.4.2 Nanostructured Materials 1.4.2.1 Bimetallic and Janus Nanoparticles 1.4.2.2 Nano-Metal-Organic Frameworks 1.4.3 Other Functional Materials 1.4.3.1 Hydrogels and Aerogels 1.5 Synthesis of Advanced Functional Materials 1.5.1 Top-Down Approach 1.5.2 Bottom-Up Approach 1.5.3 Emerging and Sustainable Routes for the Functional Nanoparticles Synthesis 1.5.3.1 Green Synthesis 1.5.3.2 Nanoparticle Synthesis From Waste 1.6 Surface Treatment and Functionalization Strategies 1.7 Applications 1.7.1 Kinetic Promoter in CO[sub(2)] Sequestration 1.7.2 Stimulation of Biofuels Production 1.7.3 Heat Transfer Agents in Thermal Application 1.7.4 Wastewater Treatment 1.7.5 Kinetic Promoter in Extraction and Production of Chemicals 1.7.6 Corrosion Inhibitor 1.7.7 Chemical and Biological Sensing 1.8 Conclusion References Chapter 2 Application of Functional Materials and Corrosion Inhibitors for Downstream Offshore Oil and Gas Industry Abbreviations 2.1 Functional Material for H[sub(2)]S Treatment 2.2 Functional Materials for H[sub(2)]S Adsorption 2.3 Synthesis and Characterization 2.4 Functional Materials for H[sub(2)]S Oxidation 2.5 Functional Materials for H[sub(2)]S Valorization 2.6 Sustainable Green Inhibitors for Offshore Oil and Gas Facilities 2.6.1 Chitosan Schiff Bases 2.6.2 Chitosan Polymeric Salts 2.6.3 PEG Cross-Linked Chitosan 2.6.4 Carboxymethyl Hydroxypropyl Chitosan 2.6.5 Acid Grafted Chitosan 2.6.6 Biomaterial Grafted Chitosan 2.6.7 Triazole-Modified Chitosan 2.6.8 Plant Extract 2.7 Offshore Oil and Gas Industry Functional Materials Challenges, Prospects, and Conclusion References Chapter 3 Application of Functional Ceramics in Oil and Gas Industries: Properties and Current Status Abbreviations 3.1 Introduction 3.2 Ceramic Materials for Oil and Gas Industries 3.2.1 Carbon Graphite Materials for the Oil and Gas Industries 3.3 Challenges Due to Corrosion Issues in Oil and Gas Industries 3.3.1 Ceramic Coatings in Oil and Gas Industries 3.3.1.1 Challenges with Ceramic Coatings 3.3.2 Functional Ceramic/Polymer Nanocomposites for the Oil and Gas Industries 3.4 Outlook 3.4.1 Ceramic Sensors for Oil and Gas Sectors 3.4.2 Wastewater Treatment for Oil and Gas Sectors 3.4.3 Anti-fouling Ceramic Materials for Oil and Gas Sectors 3.5 Conclusion References Chapter 4 Understanding the Adsorption Behaviour of Corrosion Inhibitors on Metal–Water and Air–Water Interfaces From Molecular Simulations Abbreviations 4.1 Introduction 4.2 Free Energies in Different States 4.2.1 Adsorption Free Energy in Infinite Dilution 4.2.2 Adsorption Free Energy of Inhibitor Micelles 4.3 Adsorption Morphology of bda-12 Molecules 4.4 Adsorption Morphology of bda-4 Molecules 4.5 Adsorption Morphology of Decanethiol Molecules 4.6 Adsorption Morphology of an Equimolar Mixture of bda-12 and pe-12 Molecules 4.7 Free Energy of Inhibitors Across Air–Water Interfaces 4.8 Micellization Tendency of Quat-10-OH Molecules 4.9 Conclusion Acknowledgments References Chapter 5 Application of Modern Functional Materials in Petroleum Exploration and Process Development Abbreviations 5.1 Introduction 5.2 EOR Mechanisms 5.2.1 Nanofluids 5.2.1.1 Pore Channel Plugging 5.2.1.2 Disjoining Pressure 5.2.1.3 Mobility Ratio 5.2.1.4 Interfacial Tension Reduction 5.2.1.5 Wettability Alteration 5.2.1.6 Prevention of Asphaltene Precipitation 5.2.2 Nanoemulsions 5.2.3 Nanocatalysts 5.3 Energy Extraction From Gas Hydrate Using Nanoparticle 5.4 Oceanic CO[sub(2)] Sequestration 5.5 Conclusion References Chapter 6 Application of Self-Cleaning Materials in the Oil and Gas Industries Abbreviations 6.1 Introduction 6.2 Wettability and Models for Superhydrophobic Surfaces 6.2.1 Young's Model 6.2.2 Cassie Model 6.2.3 Wenzel Model 6.2.4 Cassie-Baxter Model 6.3 Nature's Patterns of Self-Cleaning 6.3.1 Lotus Effect 6.3.2 Rice Leaves 6.3.3 Butterfly Wings and Peacock Feather 6.3.4 Water Strider Legs and Insect Compound Eyes 6.4 Materials and Mechanism to Produce Hydrophobic and Superhydrophobic Coatings 6.4.1 Making a Rough Surface and Modifying the Surface with a Material of Low Surface Energy 6.4.1.1 Wet Chemical Reaction and Hydrothermal Reaction 6.4.1.2 Electrochemical Deposition 6.4.1.3 Lithography 6.4.1.4 Electrospinning Technique 6.4.1.5 Etching and CVD 6.4.1.6 Sol – Gel Method and Polymerization Reaction 6.4.1.7 Self-Assembly and Layer-by-Layer (LBL) Methods 6.4.2 Roughening the Surface of Low-Surface-Energy Material 6.4.2.1 Fluorocarbons 6.4.2.2 Organic Materials 6.4.2.3 Inorganic Materials 6.4.2.4 Silicones 6.5 Characterization Techniques 6.6 Applications of Superhydrophobic Coatings for Pipelines 6.6.1 Self-Cleaning 6.6.2 Anti-Biofouling 6.6.3 Anti-Corrosion 6.6.4 Anti-Icing 6.6.5 Other Significant Applications 6.6.5.1 Superhydrophobic Coatings in Glasses 6.6.5.2 Superhydrophobic Coatings in Textiles 6.6.5.3 Superhydrophobic Coatings on Vehicles 6.6.5.4 Superhydrophobic Coatings on Building Walls 6.7 Challenges and Future Outlook 6.8 Conclusion References Chapter 7 Microstructural and Chemical Characterization Techniques of Coatings: State of the Arts Abbreviations 7.1 Introduction 7.2 Features and Properties of Thin-Film Coating 7.3 Types of Coating 7.4 Methodologies 7.5 Advanced Characterization Techniques for Thin-Film Coatings 7.6 Coated Nanoparticles 7.6.1 Functional Groups Immobilized Nanoparticles 7.6.2 Core-Shell Nanoparticles 7.6.3 Organic Coated Core-Shell NPs 7.6.4 Inorganic Coated Core-Shell NPs 7.6.5 Core-Corona-Canopy System 7.7 Advance Characterization Techniques for Coated Nanoparticles 7.8 Future Prospects 7.9 Conclusion References Chapter 8 Corrosion Under Insulation (CUI) in Oil and Gas Industries Abbreviation 8.1 Introduction 8.2 Insulation Materials 8.2.1 Glass Wool 8.2.1.1 Temperature Range 8.2.2 Rockwool/Mineral Wool 8.2.2.1 Loose Mineral Wool 8.3 Corrosion Under Insulation (CUI) 8.3.1 Factors Affecting the CUI 8.4 Non-Destructive Techniques (NDT) 8.4.1 Infrared Thermography 8.4.2 Radiography 8.4.3 Other Important Techniques 8.5 The Temperature Range for Corrosion Under Insulation (CUI) 8.6 Outlook and Prospects 8.7 Conclusion References Chapter 9 Application of Functional Ceramics in Oil and Gas Industries: Manufacturing, Properties, and Current Status Abbreviations 9.1 Introduction 9.1.1 Properties of the Refractories 9.1.1.1 Specific Gravity 9.1.1.2 Bulk Density 9.1.1.3 Apparent Porosity 9.1.1.4 Permeability 9.2 Classification of Refractories 9.3 Manufacturing of Refractories 9.3.1 Shaped Refractories 9.3.1.1 Silica Refractories 9.3.1.2 Aluminosilicate Refractories 9.3.1.3 Fireclay Refractories 9.3.1.4 Alumina Refractories 9.3.2 Unshaped Refractories 9.3.2.1 Mortars 9.3.2.2 Ramming Masses 9.3.2.3 Castables 9.3.3 Advantages and Industrial Applications 9.3.4 Limitations of Applications of Shaped Refractories in Industries 9.4 Installation of Refractories 9.4.1 Installation of Shaped Refractories 9.4.2 Monolithic Refractories Installation 9.5 Preheating of Refractories 9.6 Preheating of Castables 9.7 Refractories in Petroleum Refineries 9.7.1 Fluid Catalytic Cracking Unit 9.7.2 Sulfur Recovery Unit 9.7.3 Selection of Refractories 9.8 Refractory Performance and Mechanism of Damage 9.9 Conclusion References Chapter 10 Recent Progress in Superhydrophobic Macroporous Sorbents for Oil Spill Remediation Abbreviations 10.1 Introduction 10.2 Wettability and Nonwettability: Fundamental Concept of Contact Angle and Superhydrophobicity 10.3 Fabrication Strategies of Macroporous Sorbents for Oil Spill Remediation 10.3.1 Dip Coating 10.3.2 Wet Chemical Method 10.3.3 Chemical Vapor Deposition (CVD) 10.3.4 Hydrothermal and Sol-Gel Method 10.4 Oil Spill Remediation Using Superhydrophobic-Superoleophilic Macroporous Sorbents 10.4.1 Carbon-Based Macroporous Sorbents 10.4.2 Polyurethane Sponge-Based Macroporous Sorbents 10.4.3 Melamine Sponge-Based Macroporous Sorbents 10.4.4 Other Macroporous Sorbents 10.5 Filtration Membrane Technologies for Selective Separation 10.6 Conclusions and Prospects References Chapter 11 Materials for Renewable Energy Resources for Oil and Gas Industries Abbreviations 11.1 Introduction 11.2 Oil and Gas Industry Status 11.3 Ongoing Trend and Potential Opportunities 11.3.1 Reduction of High-Quality Oil Reserves 11.3.2 Environmental Impact Caused by the Industries 11.3.3 Declining Renewable Energy Cost 11.3.4 Renewable Energy Options for the Oil Industries 11.4 Renewable Energy Options for the Gas Industries 11.5 Bioenergy for Fuels 11.6 Alternatives for Oil and Gas Energy 11.6.1 Substitution of Renewable Technology in Production Stage 11.6.2 Renewable Alternative in Primary Stage 11.6.3 Renewable Substitution in Secondary Phase of Oil Recovery 11.6.4 Renewable Substitution for Tertiary Phase of Oil Recovery 11.6.5 Substitution of Renewable Technology in Mid-Stream Stage 11.6.6 Compressor Electrification 11.6.7 Compressor Heat Recovery 11.6.8 Turboexpanders 11.7 Substitution of Renewable Technology in Downstream Stage 11.7.1 In Generation of Heat and Power 11.7.2 Production of Hydrogen 11.7.3 For Power Cogeneration 11.8 Prospects of Greener Fuel 11.9 Conclusion References Chapter 12 Functional Clay Minerals Application in Oil and Gas Industries Abbreviations 12.1 Introduction 12.2 Functions of Clay 12.3 Adsorption Characteristics of Petroleum Fractions on Clays 12.4 Reservoir Quality in Clay Presence 12.5 Clay Minerals in Gas Sorption and Carbon Sequestration 12.6 Functional Clay Minerals for Oil and Gas Wastewater Treatment 12.6.1 Benzene, Toluene, and Xylene 12.6.2 Phenolic Compounds 12.6.3 Heavy Metals 12.6.4 Heavy Metal Removal by the Smectite Group 12.7 Challenges and Future Perspectives 12.8 Clay Minerals as Additives for Oil/Gas Drilling References Index