ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Functional Biomaterials: Drug Delivery and Biomedical Applications

دانلود کتاب بیومواد عملکردی: دارورسانی و کاربردهای زیست پزشکی

Functional Biomaterials: Drug Delivery and Biomedical Applications

مشخصات کتاب

Functional Biomaterials: Drug Delivery and Biomedical Applications

ویرایش: [1st ed. 2022] 
نویسندگان:   
سری:  
ISBN (شابک) : 9811671516, 9789811671517 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 530
[524] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 11 Mb 

قیمت کتاب (تومان) : 30,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Functional Biomaterials: Drug Delivery and Biomedical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب بیومواد عملکردی: دارورسانی و کاربردهای زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب بیومواد عملکردی: دارورسانی و کاربردهای زیست پزشکی



این کتاب به طور عمیق طیف گسترده‌ای از سیستم‌های کاربردی مبتنی بر بیومواد را برای جنبه‌های دارو، انتقال ژن و جنبه‌های زیست‌پزشکی بررسی می‌کند. این فصل‌ها فناوری‌های جدیدتری مانند میسل پلیمری، مواد زیستی پاسخ‌دهنده به pH، هیدروژل‌های پاسخ‌دهنده به محرک‌ها، فیبروئین ابریشم، بیومواد معدنی، بیومواد مصنوعی، بیوموادهای پرینت سه‌بعدی، زیست‌مواد فلزی، مواد زیستی سرامیکی و هیبریدی را پوشش می‌دهند. همچنین رویکردهای ترانوستیک برای درمان سرطان، داربست‌های نانوالیاف مبتنی بر مواد زیستی در مهندسی بافت، و همچنین کاربردهای استراتژی‌های بیومواد فلزی در زمینه پروتزهای پزشکی و دندانی را شرح می‌دهد. این رویکرد جدیدتر و به روز شده برای دانشجویان مهندسی زیست پزشکی که در زمینه علم مواد در توسعه استراتژی های جدید تحویل دارو کار می کنند، جذاب خواهد بود. این کتاب مرجع مهمی برای محققان و متخصصانی خواهد بود که در زمینه تحقیقات زیست مواد در زمینه های دارویی و پزشکی کار می کنند.


توضیحاتی درمورد کتاب به خارجی

This book explores in depth a wide range of functional biomaterials-based systems for drug, gene delivery, and biomedical aspects. The chapters cover newer technologies such as polymeric micelle, pH-responsive biomaterials, stimuli-responsive hydrogels, silk fibroin, inorganic biomaterials, synthetic biomaterials, 3D printed biomaterials, metallic biomaterials, ceramic and hybrid biomaterials. It also describes the theranostic approaches for cancer therapy,  the biomaterials-based nanofibers scaffolds in tissue engineering, as well as the strategies applications of metallic biomaterials for the medical and dental prosthetic field. This newer and updated approach will be attractive for biomedical engineering students working on materials science in the development of novel drug delivery strategies. The book will be an important reference for researchers and professionals working on biomaterial research in the pharmaceutical and medical fields.



فهرست مطالب

Contents
About the Editors
Functional Biomaterials: Drug Delivery and Biomedical Applications Polymeric Micelle in Drug Delivery Applications
	1 Introduction
	2 Types of PMs
	3 Synthesis Materials, Methods, and Characterization of Polymeric Micelles
		3.1 Materials for the Synthesis of PMs
		3.2 Preparation Methods of PMs
			3.2.1 Direct Dissolution
			3.2.2 Indirect Dissolution
		3.3 Characterization of PMs
	4 Targeting Approaches of PMs
		4.1 Passive Targeting
		4.2 Active Targeting
	5 Stimuli-Based Drug Release
		5.1 pH-Sensitive PMs
		5.2 Thermal-Sensitive PMs
		5.3 Redox-Sensitive PMs
		5.4 Light-Sensitive PMs
	6 Drug Delivery Applications
		6.1 Anticancer Drug Delivery
		6.2 Gene Delivery
		6.3 Immuno Micelles
		6.4 Ocular Drug Delivery
		6.5 Oral Drug Delivery
	7 Conclusion
	References
pH-Responsive Biomaterials in Drug Delivery
	1 Introduction
	2 Importance of pH as a Stimulus for Drug Release
	3 Polymeric Carrier as Biomaterial.
		3.1 Properties of pH-Responsive Polymers
	4 Classification of Polymeric Carrier as Biomaterial
		4.1 Natural Polymers
			4.1.1 Alginates
			4.1.2 Chitosan
			4.1.3 Pullulan
			4.1.4 Carboxymethylcellulose
			4.1.5 Hyaluronic Acid
			4.1.6 Starch and Dextran
			4.1.7 Polyurethane
		4.2 Synthetic pH-Responsive Polymers
			4.2.1 Polyacids/Polyanions based pH-Responsive Polymers
			4.2.2 Polybases/Polycations based pH-Responsive Polymers
			4.2.3 Block Copolymers
			4.2.4 Polymer Brushes and Comb
			4.2.5 Hydrogels
	5 pH-Sensitive Bonds
		5.1 Imine Bonds
		5.2 Hydrazone Bonds
		5.3 Oxime Bonds
		5.4 Amide Bonds
		5.5 Acetals
	6 Mechanism of pH-Responsive Behavior of Biomaterials
		6.1 Protonation as a Response to Change in pH
		6.2 Acid Labile Bond Cleavage
		6.3 Acid Labile Bond Cleavage for the Detachment of PEG
	7 Application of pH-Responsive Biomaterials in Drug Delivery
		7.1 Oral Drug Delivery for Organ Targeting
			7.1.1 Oral Drug Delivery for Local Action in the Stomach
			7.1.2 Oral Drug Delivery for Local Action in Colon
			7.1.3 Oral Drug Delivery for Protein and Peptide
			7.1.4 Oral Drug Delivery for Vaccine and Immunotherapeutics
		7.2 Tissue-Level Drug Delivery/Tumor Targeting
		7.3 Intracellular Delivery
	8 Summary
	References
Stimuli-Responsive Hydrogels in Drug Delivery
	1 Introduction
	2 Release Mechanisms for Drugs
		2.1 Mathematical Models
	3 Polymers Used in the Fabrication of Stimuli-Responsive Hydrogels for Controlled Drug Delivery
		3.1 Natural Polymers
		3.2 Synthetic Polymers
		3.3 Hybrid Polymers
	4 Stimuli-Responsive Hydrogels in Drug Delivery
		4.1 Thermo-responsive
		4.2 pH-Responsive
		4.3 Photoresponsive
		4.4 Analyte-Responsive Hydrogels
		4.5 Ultrasound
		4.6 Others
	5 Advances in Stimuli-Responsive Hydrogels for Drug Release
		5.1 Transdermal
		5.2 Vaginal
		5.3 Ocular
		5.4 Oral Delivery
		5.5 Nasal
	6 Conclusion
	References
Polysaccharide Based Biomaterials for Dermal Applications
	1 Introduction
	2 Categorization of Natural Polysaccharides
		2.1 According to the Ionic Nature
		2.2 According to the Origin
		2.3 According to the Shape
	3 Polysaccharides Used in TDDS
		3.1 Starch
		3.2 Cellulose
		3.3 Chitin and Chitosan
		3.4 Hyaluronic Acid
		3.5 Alginate/Sodium Alginate
	4 Conclusion
	References
Biomaterials in Gene Delivery
	1 Introduction
	2 Classification and Biological Performance of Biomaterials
	3 Properties of Biomaterials
		3.1 Physical Properties
		3.2 Chemical Properties
		3.3 Mechanical Properties
		3.4 Host Response to Biomaterials
	4 Use of Biomaterials in Medical Fields
	5 Gene Delivery and Biological Barrier
	6 Engineering Challenges to Gene Transfer
	7 Vectors Associated with Biomaterials Carriers
	8 Gene Delivery Based on Non-viral Vectors
	9 Biomaterials in Gene Delivery
		9.1 Lipid-Based Gene Vectors
		9.2 PLL-Based Gene Vectors
		9.3 Polyethylenimine-Based Gene Vectors
		9.4 Polyamidoamine Dendrimers-Based Gene Vectors
		9.5 Chitosan-Based Gene Vector
	10 Practical Application of Gene Delivery Systems
	11 Perspective of Biomaterials for Gene Delivery
	12 Conclusion
	References
Polymeric Nanoparticles for Theranostic Treatment of Cancer
	1 Introduction
	2 Polymeric Nanoparticles in Cancer Treatment
		2.1 Passive-Targeting Strategies
		2.2 Active-Targeting Strategies
	3 Design of Polymer-Based Nanotheranostics for Cancer
		3.1 Fluorescence Imaging
		3.2 X-Ray Computed Tomography
		3.3 Magnetic Resonance Imaging
		3.4 Positron Emission Tomography
		3.5 Single-Photon Emission Computed Tomography
		3.6 Ultrasound Imaging
	4 Multimodal Theranostic Nanoparticles
	5 Polymeric Nanotheranostic Currently in Clinical Trials
	6 Conclusions and Remarking for Future Perspectives
	References
Smart Theranostic Biomaterials for Advanced Healthcare Application
	1 Introduction
	2 Biomaterials
	3 Natural Biomaterials
		3.1 Polysaccharide Biomaterials
		3.2 Protein Biomaterials
		3.3 Decellularized Biomaterials
	4 Synthetic Biomaterial
		4.1 Metals
		4.2 Ceramics
		4.3 Glass
		4.4 Polymers
	5 Theranostic Biomaterials
	6 Applications of Theranostic Biomaterials
	7 Imaging
	8 Therapy
	9 Future Perspectives
	10 Conclusion
	References
Silk Fibroin-Based Biomaterials in Biomedical Applications
	1 Introduction
	2 Life Cycle of Silkworm
	3 Extraction Process of Silk Fibroin from Bombyx Mori Cocoons
		3.1 Dissolution of Silk Fibroin
	4 Cross-Linking Strategies for Silk Fibroin
	5 Morphological Diversity of Silk Fibroin into Various Forms
		5.1 Hydrogel
		5.2 Sponges
		5.3 Electrospun Silk Fibers
		5.4 Microspheres
		5.5 Films
		5.6 Tubes
	6 Biomedical Applications of Silk Fibroin Based Materials
		6.1 Bone
		6.2 Articular Cartilage
		6.3 Cornea
		6.4 Wound Healing
		6.5 Vascular Graft
		6.6 Drug Delivery
		6.7 Gene Delivery
	7 Future Perspectives
	References
Biomaterial-Based Nanofibers Scaffolds in Tissue Engineering Application
	1 Introduction
	2 Bone Fracture Statistics
	3 Bone and Biomaterials
	4 Nanofibrous Scaffolds
	5 Analogous Functions of Scaffolds and Extracellular Matrix
	6 Materials for Scaffolds
	7 Fabrication Techniques
	8 Scaffold Applications
	9 Latest Developments and Challenges
	10 Conclusion and Future Perspectives
	References
Biomedical Applications of Inorganic Biomaterials
	1 Introduction
	2 Nonmetallic Biomaterials
		2.1 Ceramic Biomaterials
			2.1.1 Biodegradable or Resorbable Ceramics
				Calcium Phosphate
				Coralline
				Zinc-Calcium-Phosphorous Oxide (ZCAP) Ceramics
			2.1.2 Bioactive Ceramics
				Bioglass
				Ceravitals
				Hydroxyapatite
			2.1.3 Bioinert Ceramics
				Alumina Ceramics
				Zirconia Ceramics
				Carbon Ceramics
		2.2 Biocomposites
			2.2.1 Classification of Composites
				Fibrous Composites
				Particulate Composite
		2.3 Polymeric Biomaterials
			2.3.1 Rubber
			2.3.2 Polyphosphate
			2.3.3 Biosilica
	3 Drawbacks of the Inorganic Biomaterials
	4 Conclusion
	References
Synthesis Biomaterials in Biomedical Applications
	1 Introduction
		1.1 Design of Biomaterial
			1.1.1 Polymer Materials
			1.1.2 Metal Biomaterials
			1.1.3 Synthesis Composite Materials
			1.1.4 Ceramics Materials
	2 Synthetic Biomaterials
		2.1 Synthesis Polymer Biomaterials for Biomedical Applications
		2.2 Synthetic Biodegradable Polymers
		2.3 Synthetic Biodegradable Polymer in Tissue Engineering Applications
			2.3.1 Nerve Repair
			2.3.2 Skin Regeneration
			2.3.3 Bone Regeneration
		2.4 Biodegradable Synthetic Polymer in Drug Delivery Application
	3 Synthetic Conducting Polymer
		3.1 Types of Conduction Polymers
		3.2 Biomedical Application of Conducting Polymer
			3.2.1 Tissue Engineering Application of Synthesis Conducting Polymer
				Neural Applications
				Conducting Polymer in Cardiovascular Tissue Engineering
			3.2.2 Drug Delivery Application of Synthetic Conducting Polymer
	4 Synthetic Polymer Hydrogel
		4.1 Biomedical Application of Synthetic Polymer Hydrogel
	5 Stimuli-Responsive Synthetic Polymer
		5.1 Temperature and pH-Responsive Synthetic Polymers
		5.2 Stimuli-Responsive Synthetic Biopolymer
		5.3 Responsive Synthetic for Biological Polymer Micelles
		5.4 Stimuli-Responsive Synthetic Polymers Application
			5.4.1 Actuators and Artificial Muscles Application
			5.4.2 Sensors
			5.4.3 Controlled Drug Delivery
			5.4.4 Gene Delivery
	6 Polyelectrolytes (PEs) for Biomedical Applications
		6.1 Types of Polyelectrolyte Complex (PEC)
		6.2 Preparation of Polyelectrolytes
		6.3 Applications of PECs in Wound Healing
			6.3.1 Wound Dressing
			6.3.2 PEC-in Wound Dressings Applications
		6.4 Drug Delivery Application of PECs
		6.5 Tissue Engineering Application of PECs
	7 Synthetic Fluorescent Gold Nanoclusters for Detecting Applications in Cancer Treatment
		7.1 Strategies for the Synthesis of Gold Nanoparticles (AuNPs)
			7.1.1 Dendrimer
			7.1.2 Proteins
		7.2 Biomedical Applications of AuNCs
			7.2.1 Imaging Biography and Targeted Therapy Application of AuNCs
				Biosensors
	8 Synthetic Biomaterials with Antimicrobial Properties
		8.1 Silvernanoparticles as Antimicrobial Agent in Biomedical Application
		8.2 Silver-Polymeric Nanocomposites
		8.3 Silver-Inorganic Nanocomposites
		8.4 Silver and Carbon Nanocomposites
	9 Conclusion
	References
3D-Printed Biomaterials in Biomedical Application
	1 Introduction
	2 Three-Dimensional (3D) Printing
	3 3D Printing Methods
	4 3D Printing
	5 3D Bioprinting
		5.1 Tissue Regeneration
		5.2 Functional Organ Replacement
		5.3 Drug Delivery
	6 4D and 5D Printing
	7 Artificial Intelligence, Machine Learning, and Deep Learning in Bioprinting
	8 Challenges and Future Perspectives
	9 Conclusion
	References
Metallic Biomaterials in Biomedical Applications
	1 Introduction
	2 Metallic Biomaterials
		2.1 Algae Synthesized Metal Nanoparticles
		2.2 Plant Synthesized Metal Nanoparticles
		2.3 Fungi Synthesized Metal Nanoparticles
		2.4 Chitosan Synthesized Metal Nanoparticles
	3 Conclusion
	References
Ceramic Biomaterials in Advanced Biomedical Applications
	1 Introduction
	2 Bioceramics and their Applications
	3 Bioactive Ceramics for Bone Regeneration
	4 Commonly Available Biodegradable Ceramics for Bone TE Application
		4.1 Calcium Phosphate Ceramics
		4.2 Hydroxyapatite
		4.3 Tricalcium Phosphate
		4.4 Bioactive Glass and Glass Ceramics
	5 Desirable Properties of an Ideal Ceramic Scaffold
		5.1 Mechanical Property
		5.2 Porosity, Pore Size, and Shape
		5.3 Biocompatibility and Biodegradability
		5.4 Osteoinductivity, Osteoconductivity, and Osseointegrity
		5.5 Fabrication Technique and Designs
	6 Biodegradable Scaffold for Drug Delivery System in Bone Diseases
		6.1 Antibiotics Delivery
		6.2 Delivery of Drugs
	7 Doped Ceramic for Biomedical Applications
	8 Conclusion
	9 Future Direction
	References
Hybrid Biomaterials in Drug Delivery and Biomedical Applications
	1 Definition and the Concept of Human Body as a Hybrid System
	2 Hybrid Biomaterials in Drug Delivery
	3 Hybrid Biomaterials for Biomedical Application
	4 Conclusion Remarks and Future Challenges
	References
Graphene Polymer Composites for Biomedical Applications
	1 Introduction
	2 Graphene Polymer Hybrids
	3 Properties of Graphene Polymer Composites
		3.1 Physiochemical Properties
		3.2 Mechanical Properties
		3.3 Electrical Properties
		3.4 Thermal Properties
	4 Surface Modification of Graphene with Polymers
		4.1 Covalent Modification
		4.2 Nonconvalent Modification
	5 Preparation of Graphene Polymer Composite
		5.1 Polymerization Approach
			5.1.1 Polymerization by Preintercalated Compounds
			5.1.2 In Situ Intercalation Polymerization
			5.1.3 In Situ Ziegler Natta Polymerization
			5.1.4 Electropolymerization
		5.2 Solution Mixing
		5.3 Melt Compounding
		5.4 Latex Blending
	6 Biomedical Applications of Graphene Polymer Composites
		6.1 Drug Delivery
		6.2 Gene Delivery
		6.3 Bioimaging
		6.4 Cancer Therapy
		6.5 Biomedical Materials
		6.6 As Biosensors
		6.7 Antibacterial Activity
		6.8 Other Applications
			6.8.1 Energy Storage Materials
			6.8.2 Electronic Devices
	7 Key Challenges of Graphene Polymer Composites
	8 Conclusion and Prospects
	References
Applications of Ionic Liquids in Pharmaceutical Sciences
	1 Introduction
		1.1 Ionic Liquids: Attractive Materials for Application in the Pharmaceutical Sciences
		1.2 An Overview of the Applications of Ionic Liquids in Pharmaceutical Sciences
	2 Applications of Ionic Liquids for Drug Delivery
		2.1 Hybrid Systems for Drug Delivery: Ionic Liquids, Microemulsions, and Nano-Delivery Systems
	3 Topical and Transdermal Routes
	4 Ionic Liquids for Skin Drug Delivery
		4.1 ILs as Solubilizing Agent for Poorly Soluble Drugs
		4.2 Topical Delivery
		4.3 Transdermal Delivery
		4.4 Ionic Liquids as Chemical Permeation Enhancers
	5 Bioinspired Ionic Liquids
		5.1 CAGE Ionic Liquids
		5.2 API-ILs
	6 Drug Synthesis Using Ionic Liquids
	7 Ionic Liquid Toxicity
	8 Other Applications
		8.1 Drug Crystallization
		8.2 Drug Formulations
		8.3 Prodrugs
	9 Conclusions and Perspectives
	References
Metallic Biomaterials for Medical and Dental Prosthetic Applications
	1 Introduction
	2 Nonbiodegradable Metallic Implants
		2.1 Titanium (Ti) and Ti Alloys
		2.2 Cobalt-Based Alloy
	3 Biodegradable Metallic Implants
		3.1 Magnesium Alloy
		3.2 Zinc Alloy
		3.3 Iron Alloy
	4 Shape Memory Alloys
	5 3D-Printed Alloys
	6 Surface Modifications of Metallic Implants
		6.1 Texturing
		6.2 Chemical Treatment
		6.3 Ion Implantation
		6.4 Coatings
	7 Limitation and Future Perspectives of Metallic Biomaterials
	8 Conclusion
	References




نظرات کاربران