دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Chander Prakash (editor), Sunpreet Singh (editor), J. Paulo Davim (editor) سری: Manufacturing Design and Technology ISBN (شابک) : 2020018332, 9780429298035 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 226 [239] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 Mb
در صورت تبدیل فایل کتاب Functional and Smart Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد کاربردی و هوشمند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تصویری جامع و گسترده از تحقیقات، توسعه، و آینده تجاری پیشرفته اکتشافات مختلف انجام شده در دنیای واقعی مواد کاربردی و هوشمند ارائه می دهد.
این کتاب مسیرهای مختلف سنتز و ساخت عملکرد و مواد هوشمند را برای کاربردهای جهانی مانند علم مواد، مهندسی مکانیک، تولید، مترولوژی، نانوتکنولوژی، فیزیک، زیستشناسی، شیمی، مهندسی عمران و علوم غذایی ارائه میکند. محتوای این کتاب افق های علمی مختلفی را باز می کند که ثابت شده است برای ارتقای استانداردهای شیوه های روزمره در حوزه زیست پزشکی مفید است. نوآوریهای بیشماری در علم و مهندسی مواد، زندگی روزمره ما را به روشهای خارقالعادهای متحول میکند.
این کتاب حوزههای نوظهور علم مواد و مهندسی ساخت پیشرفته را به تصویر میکشد و روندهای اخیر در تحقیقات را برای محققان، میدانی ارائه میکند. مهندسان و متخصصان دانشگاهی.
This book presents a comprehensive and broad-spectrum picture of the state-of-the-art research, development, and commercial prospective of various discoveries conducted in the real world of functional and smart materials.
This book presents various synthesis and fabrication routes
of function and smart materials for universal applications
such as material science, mechanical engineering,
manufacturing, metrology, nanotechnology, physics, biology,
chemistry, civil engineering, and food science. The content
of this book opens various scientific horizons proved to be
beneficial for uplifting the standards of day-to-day
practices in the biomedical domain. Myriad innovations in the
materials science and engineering are transforming our
everyday lives in extraordinary ways.
This book captures the emerging areas of materials science and advanced manufacturing engineering and presents recent trends in research for researchers, field engineers, and academic professionals.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Electrochromics for Smart Windows: Oxide-Based Thin Films 1.1 Introduction 1.2 The Energy Efficiency of Chromogenic Fenestration 1.3 History and Applications 1.4 Operating Principles and Materials 1.4.1 Transparent Conductive Electrodes 1.4.2 Electrolyte 1.4.3 Electrochromic Layer 1.5 Electrochromic Oxide Films 1.5.1 Anodic Coloured Material: NiO As Reference 1.5.2 Cathodic Coloured Material: WO[sup(3)] As Reference 1.6 Conclusions References Chapter 2 Polymeric Biomaterials in Tissue Engineering 2.1 Introduction 2.2 Polymeric Biomaterials 2.2.1 Natural Polymeric Biomaterials 2.2.1.1 Proteins 2.2.1.2 Polysaccharides 2.2.2 Synthetic Polymeric Biomaterials 2.2.2.1 Polyacrylates 2.2.2.2 Polyesters 2.2.2.3 Poly(Ortho-Esters) 2.2.2.4 Poly(Alkylene Oxalates) 2.2.2.5 Poly(Glycolic Acid) 2.2.2.6 Poly(Lactic Acid) 2.2.2.7 Other Synthetic Biomaterials 2.3 Application of Polymeric Biomaterials in Tissue Engineering 2.3.1 Bone Regeneration 2.3.2 Skin Regeneration 2.3.3 Cardiovascular Tissue Engineering 2.4 Conclusion References Chapter 3 Amorphous Semiconductors: Past, Present, and Future 3.1 Background of Problem 3.1.1 Distinction between Crystalline and Amorphous Semiconductors 3.1.2 Analogy between Amorphous and Crystalline Materials 3.1.3 Techniques Used to Distinguish between Amorphous and Crystalline Materials 3.1.4 Classifications of Amorphous Semiconductors 3.1.4.1 Covalent Amorphous Semiconductors 3.1.4.2 Ionic Amorphous Solids 3.1.4.3 Metallic Amorphous Solids 3.2 Band Models for Amorphous Semiconductors 3.2.1 Cohen-Fritzsche-Ovshinsky (CFO) Model 3.2.2 Davis and Mott Model 3.2.3 Mott, Davis and Street Model 3.3 Preparation of Amorphous Semiconductors 3.3.1 Quenching Technique 3.3.2 Thermal Evaporation Technique 3.3.3 Flash Evaporation Technique 3.3.4 Sputtering Technique 3.3.5 Glow Discharge Decomposition Technique 3.3.6 Chemical Vapor Deposition Technique 3.3.7 Pulsed Laser Deposition 3.3.8 Other Techniques 3.4 Experimental Techniques to Study Amorphous Materials 3.4.1 Electrical Characterization 3.4.1.1 DC Conductivity Measurements 3.4.1.2 AC Conductivity Measurements 3.4.1.3 Defect State Measurements 3.4.2 Optical Characterization 3.5 Applications of Amorphous Semiconductors 3.6 Present Status 3.6.1 Our Understanding in This Area 3.6.2 Problems for Further Research in This Area Acknowledgments References Chapter 4 Promise of Self-lubricating Aluminum-Based Composite Material 4.1 Introduction 4.2 Historical Background and Need for the Development of Al-SLMMCs 4.3 Wear Mechanism 4.3.1 Wear Measurement Techniques 4.3.2 Erosive Wear 4.3.3 Reciprocating Wear 4.3.4 Pin on Disc 4.3.5 High- and Low-Stress Wear Test 4.4 Fabrication Methods for Al-SLMMCs 4.5 Reinforcement for Self-lubricating Behavior 4.6 Correlation between Mechanical and Tribological Aspect of Al-SLMMCs 4.7 Conclusions References Chapter 5 Energy Materials and Energy Harvesting 5.1 Introduction 5.2 Cathodes 5.3 Separators 5.4 Anodes 5.5 Binders: Properties and Functions 5.5.1 Chemical and Electrochemical Stability 5.5.2 Electrical and Ionic Conductivity 5.5.3 Adherence/Mechanical Stability 5.5.4 SEI Formation and Electrolyte Interaction 5.6 Electrolytes 5.6.1 Organic Liquid Non-Aqueous Electrolytes 5.6.2 Ionic Liquids As Liquid/Quasi-Solid Electrolytes 5.6.3 Solid Polymer Electrolytes 5.6.4 Inorganic Solid Electrolytes or Ceramic Electrolytes 5.6.5 Quantification of Ionic Conductivity 5.7 Energy Harvesters and Renewable Technologies 5.7.1 Li-Ion Batteries for Photovoltaics 5.7.2 Power Management 5.7.3 Successful Chemistries 5.8 Future Market Projections 5.9 Conclusions References Chapter 6 Advanced Processing of Superalloys for Aerospace Industries 6.1 Introduction 6.2 Demands and Improvements of Aircrafts 6.3 What is a Superalloy? 6.4 Types of Superalloys and Their Important Phases 6.4.1 Ni-Based Superalloys 6.4.2 Fe-Ni-Based Superalloys 6.4.3 Co-Based Superalloys 6.5 Fabrication Processes of Superalloys 6.5.1 Investment Casting 6.5.2 Directional Solidification 6.5.3 Powder Metallurgy 6.5.3.1 Conventional Press-and-Sinter 6.5.3.2 Hot Isostatic Pressing (HIP) 6.5.3.3 Self-Propagating High-Temperature Synthesis (SHS) 6.5.3.4 Spark Plasma Sintering (SPS) 6.5.3.5 Microwave Sintering 6.5.3.6 Metal Injection Moulding (MIM) 6.5.3.7 Additive Manufacturing 6.6 Conclusions References Chapter 7 Review on Rheological Behavior of Aluminum Alloys in Semi-Solid State 7.1 Introduction 7.2 Fundamentals of Rheology 7.2.1 Newtonian Fluids 7.2.2 Non-Newtonian Fluids 7.3 Factor Affecting Viscosity 7.3.1 Solid Fraction 7.3.2 Temperature 7.3.3 Shear Rate 7.4 Concluding Remarks References Chapter 8 Bio-Nanomaterials: An Inevitable Contender in Tissue Engineering 8.1 Introduction 8.2 Historical Aspects of Biomaterials in Tissue Engineering 8.3 Biomaterials: Functional Implications in Tissue Engineering 8.3.1 Hydrogels 8.3.1.1 Physical Hydrogels 8.3.1.2 Chemical Hydrogels 8.3.2 Chitosan 8.3.2.1 Tissue Engineering Application 8.3.3 Silk 8.3.3.1 Applications of Fibroin-Based Biomaterial in Tissue Engineering 8.3.3.2 Applications of Sericin-Based Biomaterial in Tissue Engineering 8.3.4 Polyesters 8.3.4.1 Polyhydroxyalkanoates 8.3.4.2 Applications of PHAs 8.3.4.3 Polyhydroxybutyrate (PHB) 8.3.4.4 Application of PHB 8.3.5 Calcium Phosphate Np’s (CaP) 8.3.5.1 CaP in Bone Regeneration 8.3.5.2 CaP in Clinical Dentistry 8.3.6 Hydroxyapatite 8.4 Summary and Conclusion Acknowledgement Conflict of Interest Statement References Chapter 9 Biomaterials 9.1 History of Biomaterials 9.2 Orthopaedic and Dental Implant Materials 9.2.1 Metallic Implant Materials 9.2.2 Biomaterials Based on Ca and P 9.2.2.1 Tri-Calcium Phosphate (TCP) 9.2.2.2 Tetracalcium Phosphate (TTCP) 9.2.2.3 Amorphous Calcium Phosphate (ACP) 9.2.2.4 Apatite 9.2.2.5 Porous and Dense HA Materials 9.2.2.6 HA-Based Composites 9.2.2.7 HA-Based Composite Coatings 9.2.2.8 Bond Coat 9.2.2.9 Significance of Bone Implant Interface 9.2.2.10 Comparison of Biological and Synthetic HA 9.3 Failure Mechanism of HA Coatings 9.3.1 Dissolution Behaviour of Hydroxyapatite 9.3.2 Unresolved Issues of Degradation of Hydroxyapatite References Chapter 10 Characterisation and Optimisation of TiO[sub(2)]/CuO Nanocomposite for Effective Dye Degradation from Water under Simulated Solar Irradiation 10.1 Introduction 10.2 Experimental 10.2.1 Preparation of TiO[sub(2)] Nanoparticles 10.2.2 Synthesis of TiO[sub(2)]/CuO Nanocomposite 10.2.3 Photocatalytic Activity Measurements 10.2.4 Experimental Design 10.3 Result and Discussions 10.3.1 Characteristics of TiO[sub(2)]/CuO Nanocomposites 10.3.2 Optimization Study 10.3.3 Hydrogen Generation Capacity 10.4 Conclusion References Chapter 11 Dual Applicability of Hexagonal Pyramid-Shaped Nitrogen-Doped ZnO Composites as an Efficient Photocatalyst 11.1 Introduction 11.2 Experimental Procedure 11.2.1 Chemicals 11.2.2 Preparation of p-ZnO Photocatalyst 11.2.3 Characterization of Photocatalyst 11.2.4 Photoactivity Measurements 11.2.4.1 Dye Decomposition 11.2.4.2 Hydrogen Production 11.3 Result and Discussions 11.3.1 Characteristics of Photocatalyst 11.3.1.1 UV-Visible Absorption Spectroscopy 11.3.1.2 X-ray Diffraction 11.3.1.3 Field Emission Scanning Electron Microscopy (FE-SEM) 11.3.1.4 Energy-Dispersive X-ray Analysis 11.3.1.5 Particle Size Distribution (PSD) Analysis 11.3.1.6 X-Ray Photoluminescence (PL) Spectroscopy 11.3.2 Photoactivity of N/ZnO 11.3.2.1 Dye Decomposition 11.3.2.2 Hydrogen Generation 11.4 Conclusion References Index