دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: هندسه و توپولوژی ویرایش: 1 نویسندگان: Marian Fabian, Petr Habala, Petr Hajek, Vicente Montesinos Santalucia, Jan Pelant, Vaclav Zizler سری: CMS books in mathematics 8 ISBN (شابک) : 0387952195, 9780387952192 ناشر: Springer سال نشر: 2001 تعداد صفحات: 462 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Functional analysis and infinite-dimensional geometry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل عملکرد و هندسه بی نهایت بعدی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title page Preface 1 Basic Concepts in Banach Spaces Hölder and Minkowski inequalities, classical spaces C[0,1], l_p, C₀, L_p[0,1] Operators, quotient spaces, finite-dimensional spaces, Riesz\'s lemma, separability Hilbert spaces, orthonormal bases, l₂ Exercises 2 Hahn-Banach and Banach Open Mapping Theorems Hahn-Banach extension and separation theorems Duals of classical spaces Banach open mapping theorem, closed graph theorem, dual operators Exercises 3 Weak Topologies Weak and weak star topology, Banach-Steinhaus uniform boundedness principle, Alaoglu\'s and Goldstine\'s theorem, reflexivity Extreme points, Krein-Milman theorem, James boundary, Ekeland\'s variational principle, Bishop-Phelps theorem Exercises 4 Locally Convex Spaces Local bases, bounded sets, metrizability and normability, finite-dimensional spaces, distributions Bipolar theorem, Mackey topology Carathéodory and Choquet representation; Banach-Dieudonné, Eberlein-Smulian, Kaplansky theorems, and Banach-Stone theorem Exercises 5 Structure of Banach Spaces Projections and complementability, Auerbach bases Separable spaces as subspaces of C[0,1] and quotients of l₁, Sobczyk\'s theorem, Schur\'s property of l₁ Exercises 6 Schauder Bases Shrinking and boundedly complete bases, reflexivity, Mazur\'s basic sequence theorem, small perturbation lemma Block basis sequences, Pelczynski\'s decomposition method and subspaces of l_p, Pitt\'s theorem, Khintchine\'s inequality and subspaces of L_p 1 Unconditional bases, James\'s theorem on containment of l₁ and c₀, James\'s space J, Bessaga-Pelczynski theorem Markushevich bases in separable spaces, their extension property, Johnson\'s and Plichko\'s result on l_∞ Exercises 7 Compact Operators on Banach Spaces Compact and finite-rank operators, Fredholm operators, Fredholm alternative Eigenvalues, eigenspaces, spectrum, spectral decomposition Spectral theory of compact self-adjoint and compact normal operators Banach\'s contraction principle, nonexpansive mappings, Ryll-Nardzewski theorem, Brouwer\'s and Schauder\'s theorems, invariant subspaces Exercises 8 Differentiability of Norms Smulian\'s dual test, Kadec\'s Fréchet-smooth renorming of spaces with separable dual, Fréchet differentiability of convex functions More on extremal structure, Lindenstrauss\'s result on strongly exposed points and norm-attaining operators Exercises 9 Uniform Convexity Uniform convexity and uniform smoothness, l_p spaces Finite representability, local reflexivity, superreflexive spaces and Enflo\'s renorming, Kadec\'s and Gurarii Gurarii-James theorems Exercises 10 Smoothness and Structure Smooth and compact variational principles, subdifferential, Stegall\'s variational principle Partitions of unity, smooth approximation Lipschitz homeomorphisms, Aharoni\'s embeddings into c₀, Heinrich-Mankiewicz results on linearization of Lipschitz maps Homeomorphisms, Mazur\'s theorem on l_p, Kadec\'s theorem Smoothness in l_p and Hilbert spaces Countable James boundary and saturation by c₀ Exercises 11 Weakly Compactly Generated Spaces Projectional resolutions, injections into c₀(Γ), Eberlein compacts, embedding into a reflexive space, locally uniformly rotund and smooth renormings Weakly compact operators, Davis-Figiel-Johnson-Pelczynski factorization, absolutely summing operators, Pietsch factorization, Dunford-Pettis property Quasicomplements Exercises 12 Topics in Weak Topology Eberlein compacts, metrizable subspaces Uniform Eberlein compacts, scattered compacts Weakly Lindelöf spaces, property C Corson compacts, weak pseudocompactness in Banach spaces,(B_X,w) Polish Exercises References Index