دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd ed
نویسندگان: Walter Rudin
سری: International series in pure and applied mathematics
ISBN (شابک) : 0070542368, 9780071009447
ناشر: MGH
سال نشر: 1991
تعداد صفحات: 443
زبان: English
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Functional analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل عملکرد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن کلاسیک برای دوره های تحصیلات تکمیلی در تحلیل عملکردی نوشته شده است. این متن در تحقیقات مدرن در تحلیل و ریاضیات کاربردی استفاده می شود. این نسخه جدید شامل ارائههای بهروز موضوعات و همچنین مثالها و تمرینهای بیشتر است. موضوعات جدید شامل قضیه نقطه ثابت کاکوتانی، قضیه زیرفضای ثابت لامونوسوف و یک قضیه ارگودیک است. این متن بخشی از مجموعه دانش آموزی والتر رودین در ریاضیات پیشرفته است. ادامه مطلب... pt. I. نظریه عمومی. 1. فضاهای برداری توپولوژیکی -- 2. کامل بودن -- 3. تحدب -- 4. دوگانگی در فضاهای Banach -- 5. برخی کاربردها -- pt. II. توزیع ها و تبدیل فوریه 6. تست توابع و توزیع -- 7. تبدیل فوریه -- 8. کاربرد در معادلات دیفرانسیل -- 9. نظریه توبری -- pt. III. جبر باناخ و نظریه طیفی. 10. جبرهای Banach -- 11. جبرهای جابجایی Banach -- 12. عملگرهای محدود در فضای هیلبرت -- 13. عملگرهای نامحدود
This classic text is written for graduate courses in functional analysis. This text is used in modern investigations in analysis and applied mathematics. This new edition includes up-to-date presentations of topics as well as more examples and exercises. New topics include Kakutani's fixed point theorem, Lamonosov's invariant subspace theorem, and an ergodic theorem. This text is part of the Walter Rudin Student Series in Advanced Mathematics. Read more... pt. I. General theory. 1. Topological vector spaces -- 2. Completeness -- 3. Convexity -- 4. Duality in Banach spaces -- 5. Some applications -- pt. II. Distributions and Fourier transforms. 6. Test functions and distributions -- 7. Fourier transforms -- 8. Applications to differential equations -- 9. Tauberian theory -- pt. III. Banach algebras and spectral theory. 10. Banach algebras -- 11. Commutative Banach algebras -- 12. Bounded operators on a Hilbert space -- 13. Unbounded operators
Front Cover......Page 1
Title Page......Page 6
Copyright Information......Page 7
About the Author......Page 8
Contents......Page 10
Preface......Page 14
Part I General Theory......Page 20
Introduction......Page 22
Separation properties......Page 29
Linear mappings......Page 33
Finite-dimensional spaces......Page 35
Metrization......Page 37
Boundedness and continuity......Page 42
Seminorms and local convexity......Page 44
Quotient spaces......Page 49
Examples......Page 52
Exercises......Page 57
Baire category......Page 61
The Banach-Steinhaus theorem......Page 62
The open mapping theorem......Page 66
The closed graph theorem......Page 69
Bilinear mappings......Page 71
Exercises......Page 72
The Hahn-Banach theorems......Page 75
Weak topologies......Page 81
Compact convex sets......Page 87
Vector-valued integration......Page 96
Holomorphic functions......Page 101
Exercises......Page 104
The normcd dual of a normcd space......Page 111
Adjoints......Page 116
Compact operators......Page 122
Exercises......Page 130
A continuity theorem......Page 135
Closed subspaces of L^p-spaces......Page 136
The range of a vector-valued measure......Page 139
A generalized Stone-Weierstrass theorem......Page 140
Two interpolation theorems......Page 143
Kakutani's fixed point theorem......Page 145
Haar measure on compact groups......Page 147
Uncomplemented subspaces......Page 151
Sums of Poisson kernels......Page 157
Two more fixed point theorems......Page 158
Exercises......Page 163
Part II Distributions and Fourier Transforms......Page 166
Introduction......Page 168
Test function spaces......Page 170
Calculus with distributions......Page 176
Localization......Page 181
Supports of distributions......Page 183
Distributions as derivatives......Page 186
Convolutions......Page 189
Exercises......Page 196
Basic properties......Page 201
Tempered distributions......Page 208
Paley-Wiener theorems......Page 215
Sobolev's lemma......Page 221
Exercises......Page 223
Fundamental solutions......Page 229
Elliptic equations......Page 234
Exercises......Page 241
Wiener's theorem......Page 245
The prime number theorem......Page 249
The renewal equation......Page 255
Exercises......Page 258
Part III Banach Algebras and Spectral Theory......Page 262
Introduction......Page 264
Complex homomorphisms......Page 268
Basic properties of spectra......Page 271
Symbolic calculus......Page 277
The group of invertible elements......Page 286
Lomonosov's invariant subspace theorem......Page 288
Exercises......Page 290
Ideals and homomorphisms......Page 294
Gelland transforms......Page 299
Involutions......Page 306
Applications to noncommutative algebras......Page 311
Positive functionals......Page 315
Exercises......Page 320
Basic facts......Page 325
Bounded operators......Page 328
A commutativity theorem......Page 334
Resolutions of the identity......Page 335
The spectral theorem......Page 340
Eigenvalues of normal operators......Page 346
Positive operators and square roots......Page 349
The group of invertible operators......Page 352
A characterization of B*-algebras......Page 355
An ergodic theorem......Page 358
Exercises......Page 360
Introduction......Page 366
Graphs and symmetric operators......Page 370
The Cayley transform......Page 375
Resolutions of the identity......Page 379
The spectral theorem......Page 387
Semigroups of operators......Page 394
Exercises......Page 404
Appendix A Compactness and Continuity......Page 410
Appendix B Notes and Comments......Page 416
Bibliography......Page 431
List of Special Symbols......Page 433
Index......Page 436