دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2017
نویسندگان: Manfred Einsiedler. Thomas Ward
سری: GTM 276
ISBN (شابک) : 3319585398, 9783319585390
ناشر: Springer
سال نشر: 2017
تعداد صفحات: 626
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 مگابایت
کلمات کلیدی مربوط به کتاب تجزیه و تحلیل عملکردی ، نظریه طیفی و کاربردها: معادلات دیفرانسیل، کاربردی، ریاضیات، علوم و ریاضیات، آنالیز ریاضی، ریاضیات، علوم و ریاضی، آنالیز تابعی، ریاضیات محض، ریاضیات، علوم و ریاضیات، نظریه اعداد، ریاضیات محض، ریاضیات، علوم و ریاضیات، ریاضیات، علوم و ریاضیات، حساب دیفرانسیل و انتگرال، هندسه، آمار، علوم و ریاضیات، کتاب های درسی جدید، مستعمل و اجاره ای، بوتیک تخصصی
در صورت تبدیل فایل کتاب Functional Analysis, Spectral Theory, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل عملکردی ، نظریه طیفی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی به بررسی دقیق تحلیل عملکردی و برخی از کاربردهای آن در تحلیل، نظریه اعداد و نظریه ارگودیک می پردازد. علاوه بر بحث در مورد مواد اصلی در تجزیه و تحلیل عملکردی، نویسندگان موضوعات جدیدتر و پیشرفته تر، از جمله قانون ویل برای توابع ویژه عملگر لاپلاس، قابلیت و ویژگی (T)، حساب تابعی قابل اندازه گیری، نظریه طیفی برای عملگرهای نامحدود، و یک حساب را پوشش می دهند. رویکرد تائو به قضیه اعداد اول با استفاده از جبر Banach. این کتاب همچنین شامل مثالها و تمرینهای متعددی است که آن را برای دورههای سخنرانی و خودآموزی مناسب میسازد. تجزیه و تحلیل تابعی، نظریه طیفی و کاربردها برای دانشجویان کارشناسی ارشد و پیشرفته با پیشینه ای در تجزیه و تحلیل و جبر هدف قرار می گیرد، اما همچنین برای همه کسانی که علاقه مند به دیدن اینکه چگونه تحلیل تابعی را می توان در سایر بخش های ریاضیات به کار برد، جذاب خواهد بود.
This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.
Preface Leitfaden Contents Chapter 1 Motivation 1.1 From Even and Odd Functions to Group Representations 1.2 Partial Differential Equations and the Laplace Operator 1.2.1 The Heat Equation 1.2.2 The Wave Equation 1.2.3 The Mantegna Fresco 1.3 What is Spectral Theory? 1.4 The Prime Number Theorem 1.5 Further Topics Chapter 2 Norms and Banach Spaces 2.1 Norms and Semi-Norms 2.1.1 Normed Vector Spaces 2.1.2 Semi-Norms and Quotient Norms 2.1.3 Isometries are Affine 2.1.4 A Comment on Notation 2.2 Banach Spaces 2.2.1 Proofs of Completeness 2.2.2 The Completion of a Normed Vector Space 2.2.3 Non-Compactness of the Unit Ball 2.3 The Space of Continuous Functions 2.3.1 The Arzela–Ascoli Theorem 2.3.2 The Stone–Weierstrass Theorem 2.3.3 Equidistribution of a Sequence 2.3.4 Continuous Functions in Lp Spaces 2.4 Bounded Operators and Functionals 2.4.1 The Norm of Continuous Functionals on C0(X) 2.4.2 Banach Algebras 2.5 Ordinary Differential Equations 2.5.1 The Volterra Equation 2.52 The Sturm–Liouville Equation 2.6 Further Topics Chapter 3 Hilbert Spaces, Fourier Series, Unitary Representations 3.1 Hilbert Spaces 3.1.1 Definitions and Elementary Properties 3.1.2 Sets in Uniformly Convex Spaces 3.1.3 An Application to Measure Theory 3.2 Orthonormal Bases and Gram–Schmidt 3.2.1 The Non-Separable Case 3.3 Fourier Series on Compact Abelian Groups 3.4 Fourier Series on Td 3.4.1 Convolution on the Torus 3.4.2 Dirichlet and Fejér Kernels 3.4.3 Differentiability and Fourier Series 3.5 Group Actions and Representations 3.5.1 Group Actions and Unitary Representations 3.5.2 Unitary Representations of Compact Abelian Groups 3.5.3 The Strong (Riemann) Integral 3.5.4 The Weak (Lebesgue) Integral 3.5.5 Proof of the Weight Decomposition 3.5.6 Convolution 3.6 Further Topics Chapter 4 Uniform Boundedness and the Open Mapping Theorem 4.1 Uniform Boundedness 4.1.1 Uniform Boundedness and Fourier Series 4.2 The Open Mapping and Closed Graph Theorems 2.2.1 Baire Category 4.2.2 Proof of the Open Mapping Theorem 4.2.3 Consequences: Bounded Inverses and Closed Graphs 4.3 Further Topics Chapter 5 Sobolev Spaces and Dirichlet's Boundary Problem 5.1 Sobolev Spaces and Embedding on the Torus 5.1.1 L2 Sobolev Spaces on Td 5.1.2 The Sobolev Embedding Theorem on Td 5.2 Sobolev Spaces on Open Sets 5.2.1 Examples 5.2.2 Restriction Operators and Traces 5.2.3 Sobolev Embedding in the Interior 5.3 Dirichlet's Boundary Value Problem and Elliptic Regularity 5.3.1 The Semi-Inner Product 5.3.2 Elliptic Regularity for the Laplace Operator 5.3.3 Dirichlet's Boundary Value Problem 5.4 Further Topics Chapter 6 Compact Self-Adjoint Operators, Laplace Eigenfunctions 6.1 Compact Operators 6.1.1 Integral Operators are Often Compact 6.2 Spectral Theory of Self-Adjoint Compact Operators 6.2.1 The Adjoint Operator 6.2.2 The Spectral Theorem 6.2.3 Proof of the Spectral Theorem 6.2.4 Variational Characterization of Eigenvalues 6.3 Trace-Class Operators 6.4 Eigenfunctions for the Laplace Operator 6.4.1 Right Inverse and Compactness on the Torus 6.4.2 A Self-Adjoint Compact Right Inverse 6.4.3 Eigenfunctions on a Drum 6.4.4 Weyl's Law 6.5 Further Topics Chapter 7 Dual Spaces 7.1 The Hahn–Banach Theorem and its Consequences 7.1.1 The Hahn–Banach Lemma and Theorem 7.1.2 Consequences of the Hahn–Banach Theorem 7.1.3 The Bidual 7.1.4 An Application of the Spanning Criterion 7.2 Banach Limits, Amenable Groups, Banach–Tarski 7.2.1 Banach Limits 7.2.2 Amenable Groups 7.2.3 The Banach–Tarski Paradox 7.3 The Duals of Lp(X) 7.3.1 The Dual of L1(X) 7.3.2 The Dual of Lp(X) for p>1 7.3.3 Riesz–Thorin Interpolation 7.4 Riesz Representation: The Dual of C(X) 7.4.1 Uniqueness 7.4.2 Totally Disconnected Compact Spaces 7.4.3 Compact Spaces 7.4.4 Locally Compact -Compact Metric Spaces 7.4.5 Continuous Linear Functionals on C0(X) 7.5 Further Topics Chapter 8 Locally Convex Vector Spaces 8.1 Weak Topologies and the Banach–Alaoglu Theorem 8.1.1 Weak* Compactness of the Unit Ball 8.1.2 More Properties of the Weak and Weak* Topologies 8.1.3 Analytic Functions and the Weak Topology 8.2 Applications of Weak* Compactness 8.2.1 Equidistribution 8.2.2 Elliptic Regularity for the Laplace Operator 8.2.3 Elliptic Regularity at the Boundary 8.3 Topologies on the space of bounded operators 8.4 Locally Convex Vector Spaces 8.5 Distributions as Generalized Functions 8.6 Convex Sets 8.6.1 Extreme Points and the Krein–Milman Theorem 8.6.2 Choquet's Theorem 8.7 Further Topics Chapter 9 Unitary Operators and Flows, Fourier Transform 9.1 Spectral Theory of Unitary Operators 9.1.1 Herglotz's Theorem for Positive-Definite Sequences 9.1.2 Cyclic Representations and the Spectral Theorem 9.1.3 Spectral Measures 9.1.4 Functional Calculus for Unitary Operators 9.1.5 An Application of Spectral Theory to Dynamics 9.2 The Fourier Transform 9.2.1 The Fourier Transform on L1(Rd) 9.2.2 The Fourier Transform on L2(Rd) 9.2.3 The Fourier Transform, Smoothness, Schwartz Space 9.2.4 The Uncertainty Principle 9.3 Spectral Theory of Unitary Flows 9.3.1 Positive-Definite Functions; Cyclic Representations 9.3.2 The Case G=Rd 9.3.3 Stone's Theorem 9.4 Further Topics Chapter 10 Locally Compact Groups, Amenability, Property (T) 10.1 Haar Measure 10.2 Amenable Groups 10.2.1 Definitions and Main Theorem 10.2.2 Proof of Theorem 10.15 10.2.3 A More Uniform Følner Set 10.2.4 Further Equivalences and Properties 10.3 Property (T) 10.3.1 Definitions and First Properties 10.3.2 Main Theorems 10.3.3 Proof of Každan's Property (T), Connected Case 10.3.4 Proof of Každan's Property (T), Discrete Case 10.3.5 Iwasawa Decomposition and Geometry of Numbers 10.4 Highly Connected Networks: Expanders 10.4.1 Constructing an Explicit Expander Family 10.5 Further Topics Chapter 11 Banach Algebras and the Spectrum 11.1 The Spectrum and Spectral Radius 11.1.1 The Geometric Series and its Consequences 11.1.2 Using Cauchy Integration 11.2 C*-algebras 11.3 Commutative Banach Algebras and their Gelfand Duals 11.3.1 Commutative Unital Banach Algebras 11.3.2 Commutative Banach Algebras without a Unit 11.3.3 The Gelfand Transform 11.3.4 fand Transform for Commutative C*-algebras 11.4 Locally Compact Abelian Groups 11.4.1 The Pontryagin Dual 11.5 Further Topics Chapter 12 Spectral Theory and Functional Calculus 12.1 Definitions and Basic Lemmas 12.1.1 Decomposing the Spectrum 12.1.2 The Numerical Range 12.1.3 The Essential Spectrum 12.2 The Spectrum of a Tree 12.2.1 The Correct Upper Bound for the Summing Operator 12.2.2 The Spectrum of S 12.2.3 No Eigenvectors on the Tree 12.3 Main Goals: The Spectral Theorem and Functional Calculus 12.4 Self-Adjoint Operators 12.4.1 Continuous Functional Calculus 12.4.2 Corollaries to the Continuous Functional Calculus 12.4.3 Spectral Measures 12.4.4 The Spectral Theorem for Self-Adjoint Operators 12.4.5 Consequences for Unitary Representations 12.5 Commuting Normal Operators 12.6 Spectral Measures and the Measurable Functional Calculus 12.6.1 Non-Diagonal Spectral Measures 12.6.2 The Measurable Functional Calculus 12.7 Projection-Valued Measures 12.8 Locally Compact Abelian Groups and Pontryagin Duality 12.8.1 The Spectral Theorem for Unitary Representations 12.8.2 Characters Separate Points 12.8.3 The Plancherel Formula 12.8.4 Pontryagin Duality 12.9 Further Topics Chapter 13 Self-Adjoint and Symmetric Operators 13.1 Examples and Definitions 13.2 Operators of the Form T*T 13.3 Self-Adjoint Operators 13.4 Symmetric Operators 13.4.1 The Friedrichs Extension 13.4.2 Cayley Transform and Deficiency Indices 13.5 Further Topics Chapter 14 The Prime Number Theorem 14.1 Two Reformulations 14.2 The Selberg Symmetry Formula and Banach Algebra Norm 14.2.1 Dirichlet Convolution and Möbius Inversion 14.2.2 The Selberg Symmetry Formula 14.2.3 Measure-Theoretic Reformulation 14.2.4 A Density Function and the Continuity Bound 14.2.5 Mertens' Theorem 14.2.6 Completing the Proof 14.3 Non-Trivial Spectrum of the Banach Algebra 14.4 Trivial Spectrum of the Banach Algebra 14.5 Primes in Arithmetic Progressions 14.5.1 Non-Vanishing of Dirichlet L-function at 1 Appendix A: Set Theory and Topology A.1 Set Theory and the Axiom of Choice A.2 Basic Definitions in Topology A.3 Inducing Topologies A.4 Compact Sets and Tychonoff's Theorem A.5 Normal Spaces Appendix B: Measure Theory B.1 Basic Definitions and Measurability B.2 Properties of the Integral B.3 The p-Norm B.4 Near-Continuity of Measurable Functions B.5 Signed Measures Hints for Selected Problems Notes References Notation General Index