ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Function Algebras

دانلود کتاب تابع جبر

Function Algebras

مشخصات کتاب

Function Algebras

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9028604456, 9789028604452 
ناشر: Springer 
سال نشر: 1975 
تعداد صفحات: 274 
زبان: English 
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 مگابایت 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب Function Algebras به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تابع جبر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تابع جبر

تحت عنوان تابع جبرها اکنون ممکن است تعداد بسیار زیادی از آثار را درج کنیم. به طور عمده در دهه گذشته منتشر شده است، که یکی از فصول مهم تحلیل عملکردی را تشکیل می دهد. این فصل از مشکلات مختلف رشد کرده است. به طور دائم برای ریاضیات مبله شده است. توسط نظریه توابع استفاده از روش های نوین جبر، توپولوژی و آنالیز تابعی و ارائه امکانات زیادی از کاربردها در نظریه عملگرها. از اینجا شخصیت زنده آن، تنوع نتایج به دست آمده را ادامه می دهد. انواع اشکال و زمینه هایی که این نتایج را می توان در آنها یافت. این همچنین دشواری توضیح جامع این مشکلات را توضیح می دهد. هدف این مونوگراف ارائه یک توضیح منسجم از نتایج بنیادی این نظریه با جهت‌گیری به کاربرد آن‌ها در تئوری بازنمایی عملگرهای تابع جکی است. ایده چنین کاری در طول حوزه های علمیه در مورد جبرهای تابعی که در مؤسسه ریاضیات در بخارست برگزار شد، ظاهر شد. به سرپرستی سی. فویا و در دانشکده ریاضیات و مکانیک به سرپرستی N. Boboc. مایه خوشحالی نویسنده است که از سی. فویا به خاطر کمک در تلاش هایش تشکر کند. به طور کلی و به دلیل سهم بزرگی که بحث و همکاری با وی در تدوین این تک نگاری انجام شد. همچنین از N. Boboc به خاطر بحث های روشنی که در طول حوزه های علمیه داشتیم و شرح برخی از فصول تشکر می کنم.


توضیحاتی درمورد کتاب به خارجی

Under the title of Function Algebras we may now include a very large number of works. published mainly in the last decade, which consti tute one of the important chapters of functional analysis. This chapter has grown up from various problems. permanently furnished to mathe matics. by the theory of functions. using modern methods of algebra, topology and functional analysis and presenting large possibilities of applications in operators theory. Herefrom proceeds its living character, the variety of obtained results. the variety of forms and contexts in which these results can be found. This also explains the difficulty of an exhaustive exposition of these problems. The purpose of the monograph is to present a coherent exposition of the fundamental results of this theory with an orientation to their applicability to the theory of operator representations of function alge bras. The idea of such a work appeared during the seminaries on function algebras held at the Mathematical Institute in Bucharest. under the direc tion of C. Foia~ and at the Faculty of Mathematics and Mechanics under the direction of N. Boboc. It is a pleasure for the author to express his gratitude to C. Foia~ for assistance in his efforts. in general. and for the large contribution the discussions and cooperation with him had brought in the elaboration of this monograph. I also would like to thank N. Boboc for the clear discussions we have had during the seminaries and the elaboration of some chapters.



فهرست مطالب

0001......Page 2
0002......Page 3
0003......Page 4
0004......Page 5
0005......Page 6
0006......Page 7
0007......Page 8
0008......Page 9
0009......Page 10
0010......Page 11
0011......Page 12
0012......Page 13
0013......Page 14
0014......Page 15
0015......Page 16
0016......Page 17
0017......Page 18
0018......Page 19
0019......Page 20
0020......Page 21
0021......Page 22
0022......Page 23
0023......Page 24
0024......Page 25
0025......Page 26
0026......Page 27
0027......Page 28
0028......Page 29
0029......Page 30
0030......Page 31
0031......Page 32
0032......Page 33
0033......Page 34
0034......Page 35
0035......Page 36
0036......Page 37
0037......Page 38
0038......Page 39
0039......Page 40
0040......Page 41
0041......Page 42
0042......Page 43
0043......Page 44
0044......Page 45
0045......Page 46
0046......Page 47
0047......Page 48
0048......Page 49
0049......Page 50
0050......Page 51
0051......Page 52
0052......Page 53
0053......Page 54
0054......Page 55
0055......Page 56
0056......Page 57
0057......Page 58
0058......Page 59
0059......Page 60
0060......Page 61
0061......Page 62
0062......Page 63
0063......Page 64
0064......Page 65
0065......Page 66
0066......Page 67
0067......Page 68
0068......Page 69
0069......Page 70
0070......Page 71
0071......Page 72
0072......Page 73
0073......Page 74
0074......Page 75
0075......Page 76
0076......Page 77
0077......Page 78
0078......Page 79
0079......Page 80
0080......Page 81
0081......Page 82
0082......Page 83
0083......Page 84
0084......Page 85
0085......Page 86
0086......Page 87
0087......Page 88
0088......Page 89
0089......Page 90
0090......Page 91
0091......Page 92
0092......Page 93
0093......Page 94
0094......Page 95
0095......Page 96
0096......Page 97
0097......Page 98
0098......Page 99
0099......Page 100
0100......Page 101
0101......Page 102
0102......Page 103
0103......Page 104
0104......Page 105
0105......Page 106
0106......Page 107
0107......Page 108
0108......Page 109
0109......Page 110
0110......Page 111
0111......Page 112
0112......Page 113
0113......Page 114
0114......Page 115
0115......Page 116
0116......Page 117
0117......Page 118
0118......Page 119
0119......Page 120
0120......Page 121
0121......Page 122
0122......Page 123
0123......Page 124
0124......Page 125
0125......Page 126
0126......Page 127
0127......Page 128
0128......Page 129
0129......Page 130
0130......Page 131
0131......Page 132
0132......Page 133
0133......Page 134
0134......Page 135
0135......Page 136
0136......Page 137
0137......Page 138
0138......Page 139
0139......Page 140
0140......Page 141
0141......Page 142
0142......Page 143
0143......Page 144
0144......Page 145
0145......Page 146
0146......Page 147
0147......Page 148
0148......Page 149
0149......Page 150
0150......Page 151
0151......Page 152
0152......Page 153
0153......Page 154
0154......Page 155
0155......Page 156
0156......Page 157
0157......Page 158
0158......Page 159
0159......Page 160
0160......Page 161
0161......Page 162
0162......Page 163
0163......Page 164
0164......Page 165
0165......Page 166
0166......Page 167
0167......Page 168
0168......Page 169
0169......Page 170
0170......Page 171
0171......Page 172
0172......Page 173
0173......Page 174
0174......Page 175
0175......Page 176
0176......Page 177
0177......Page 178
0178......Page 179
0179......Page 180
0180......Page 181
0181......Page 182
0182......Page 183
0183......Page 184
0184......Page 185
0185......Page 186
0186......Page 187
0187......Page 188
0188......Page 189
0189......Page 190
0190......Page 191
0191......Page 192
0192......Page 193
0193......Page 194
0194......Page 195
0195......Page 196
0196......Page 197
0197......Page 198
0198......Page 199
0199......Page 200
0200......Page 201
0201......Page 202
0202......Page 203
0203......Page 204
0204......Page 205
0205......Page 206
0206......Page 207
0207......Page 208
0208......Page 209
0209......Page 210
0210......Page 211
0211......Page 212
0212......Page 213
0213......Page 214
0214......Page 215
0215......Page 216
0216......Page 217
0217......Page 218
0218......Page 219
0219......Page 220
0220......Page 221
0221......Page 222
0222......Page 223
0223......Page 224
0224......Page 225
0225......Page 226
0226......Page 227
0227......Page 228
0228......Page 229
0229......Page 230
0230......Page 231
0231......Page 232
0232......Page 233
0233......Page 234
0234......Page 235
0235......Page 236
0236......Page 237
0237......Page 238
0238......Page 239
0239......Page 240
0240......Page 241
0241......Page 242
0242......Page 243
0243......Page 244
0244......Page 245
0245......Page 246
0246......Page 247
0247......Page 248
0248......Page 249
0249......Page 250
0250......Page 251
0251......Page 252
0252......Page 253
0253......Page 254
0254......Page 255
0255......Page 256
0256......Page 257
0257......Page 258
0258......Page 259
0259......Page 260
0260......Page 261
0261......Page 262
0262......Page 263
0263......Page 264
0264......Page 265
0265......Page 266
0266......Page 267
0267......Page 268
0268......Page 269
0269......Page 270
0270......Page 271
0271......Page 272
0272......Page 273
0273......Page 274
0274......Page 275




نظرات کاربران