ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fulton's concrete technology

دانلود کتاب فناوری بتن فولتون

Fulton's concrete technology

مشخصات کتاب

Fulton's concrete technology

ویرایش: 9 
نویسندگان:   
سری:  
ISBN (شابک) : 9780958477918, 0958477914 
ناشر: Document Transformation Technologies 
سال نشر: 2009 
تعداد صفحات: 465 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 31 مگابایت 

قیمت کتاب (تومان) : 34,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Fulton's concrete technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فناوری بتن فولتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Preface
Acknowledgements
Contributors
Print
SEARCH
Contents
Ch.1 Cementitious materials
	1.1 Introduction
	1.2 Specifications and test methods
		1.2.1 Common cements
		1.2.2 Masonry cements
		1.2.3 Cement extenders
		1.2.4 Limestone Filler
	1.3 Properties and uses
		1.3.1 Cements for concrete
		1.3.2 Cements for mortars and plasters
	1.4 Storage and handling
		1.4.1 Bagged cement
		1.4.2 Bulk cement
	1.5 Setting and hardening of cement
		1.5.1 False set and flash set
		1.5.2 Brief-mix set
	1.6 Curing
	1.7 Water:cement ratio
	1.8 The cement industry as a contributor of greenhouse gas emissions
	1.9 Manufacture and composition
		1.9.1 Portland cement
		1.9.2 Ground granulated blastfurnace slag (GGBS)
		1.9.3 Fly ash (FA)
		1.9.4 Condensed silica fume (CSF)
		1.9.5 Limestone
	1.10 Cementing reactions and reaction products
		1.10.1 Portland cement
		1.10.2 Ground granulated blastfurnace slag
		1.10.3 Fly ash and condensed silica fume
		1.10.4 Limestone
	1.11 Setting and hardening of portland cement
	1.12 Physical aspects of cement paste
		1.12.1 Portland cement paste
		1.12.2 HCP made with portland cement and cement extenders
	Further reading
	References
Ch.2 Other cements
	2.1 Introduction
	2.2 Modified portland cements
		2.2.1 Air-entraining cement
		2.2.2 Anti-bacterial cement
		2.2.3 Coloured cement
		2.2.4 Expansive cement
		2.2.5 Extra-rapid-hardening cement
		2.2.6 Hydrophobic cement
		2.2.7 Low-heat cement
		2.2.8 Oilwell cement
		2.2.9 Regulated-set cement (jet cement)
		2.2.10 Trief cement
		2.2.11 Ultra-rapid-hardening cement
		2.2.12 Waterproof cement
		2.2.13 White cement
	2.3 Other hydraulic cements
		2.3.1 Calcium aluminate cements
		2.3.2 Geopolymers
		2.3.3 Hydraulic lime
		2.3.4 Natural cement
		2.3.5 Strontium and barium cements
		2.3.6 Supersulphated cement (SSC)
	2.4 Chemical cements
		2.4.1 Aluminium oxychloride cement
		2.4.2 Magnesium oxychloride cement (Sorel cement)
		2.4.3 Magnesium oxysulphate cement
		2.4.4 Magnesium phosphate cement or magnesia-ammonium phosphate cement
		2.4.5 Sulphur
		2.4.6 Zinc oxychloride cement
	Further reading
	References
Ch.3 Aggregates for concrete
	3.1 Introduction
	3.2 Properties of concrete aggregates and their influence on the properties of concrete
		3.2.1 Absorptivity and porosity
		3.2.2 Dimensional properties
		3.2.3 Grading, fineness modulus and dust and clay content
		3.2.4 Organic material in aggregates
		3.2.5 Particle density
		3.2.6 Particle shape and surface texture
		3.2.7 Soundness
		3.2.8 Strength
		3.2.9 Water-soluble salt and other deleterious chemicals in aggregates
		3.2.10 Rocks and minerals that may be deleterious in aggregates
	3.3 Specification for aggregates
		3.3.1 Definitions
		3.3.2 Requirements for fine aggregate
		3.3.3 Requirements for coarse aggregate
	3.4 Sampling and testing
	3.5 Origin of aggregates
		3.5.1 Igneous rocks
		3.5.2 Sedimentary rocks
		3.5.3 Metamorphic rocks
		3.5.4 Geological history
	3.6 South African aggregates
		3.6.1 Coarse aggregate
		3.6.2 Fine aggregate
	3.7 The effect of crushing techniques on aggregate properties
	Appendix
		Aggregates derived from waste materials
	Acknowledgements
	Further reading
	References
Ch.4 Mixing water
	4.1 Introduction
	4.2 Practical guidelines
		4.2.1 General
		4.2.2 Assessing the suitability of water for mixing water for concrete
	4.3 Additional information
		4.3.1 General
		4.3.2 Chlorides
		4.3.3 Sulphates
		4.3.4 Alkali carbonates and bicarbonates
		4.3.5 0il
		4.3.6 Sugar
		4.3.7 Algae
		4.3.8 pH
		4.3.9 Natural waters of South Africa
		4.3.10 Wash water
		4.3.11 Sea water
		4.3.12 Domestic waste water
		4.3.13 Waste waters
	Further reading
	References
Ch.5 Chemical admixtures
	5.1 Introduction
		5.1.1 Types
		5.1.2 Mechanism of action
	5.2 Admixture categories and guide-lines for use
		5.2.1 Dispersing admixtures
		5.2.2 Retarding and retarding plasticising admixtures
		5.2.3 Accelerating admixtures
		5.2.4 Air-entraining admixtures
		5.2.5 Water-resisting admixtures (waterproofing)
		5.2.6 Mortar admixtures
		5.2.7 Sprayed concrete admixtures
		5.2.8 Grout admixtures
	5.3 Admixtures not covered by EN 934 or ASTM C494
		5.3.1 Admixtures for foamed concrete and low-density fill materials
		5.3.2 Admixtures for precast semi-dry concrete
		5.3.3 Corrosion inhibitors
		5.3.4 Pumping aids
		5.3.5 Anti-washout admixtures
		5.3.6 Polymer-dispersing admixtures
		5.3.7 Shrinkage-reducing admixtures
	5.4 Using admixtures: practical considerations
		5.4.1 Design of mixes
		5.4.2 Quality assurance
		5.4.3 Storage and handling
		5.4.4 Dosage and dispensing
		5.4.5 Safety
	Further reading
	References
Ch.6 Properties of fresh concrete
	6.1 Introduction
	6.2 Workability
		6.2.1 Factors affecting workability
	6.3 Consistence
		6.3.1 Measuring consistence
		6.3.2 Control of consistence
	6.4 Cohesiveness
	6.5 Bleeding
	6.6 Plastic cracking
		6.6.1 Plastic-shrinkage cracking
		6.6.2 Plastic settlement cracking
	6.7 Slump loss
	6.8 The “green” state
	6.9 The density of fresh concrete
		6.9.1 Measuring the density of fresh concrete
	6.10 Air content of fresh concrete
		6.10.1 Measuring air content
	6.11 Conclusion
	Further reading
	References
Ch.7 Strength of hardened concrete
	7.1 Introduction
	7.2 Methods of measuring strength
		7.2.1 Compressive strength
		7.2.2 Tensile strength
	7.3 The way concrete fails
	7.4 The relationship between com-pressive and tensile strength
	7.5 Factors which influence the strength of concrete
		7.5.1 The nature of concrete
		7.5.2 Intrinsic factors
		7.5.3 Extrinsic factors
	7.6 Bond strength
	Further reading
	References
Ch.8 Deformation and volume change of hardened concrete
	8.1 Introduction
		8.1.1 Importance of deformations in concrete structures
		8.1.2 Components of deformation
		8.1.3 Factors affecting concrete deformations
		8.1.4 Design approaches
		8.1.5 Levels of estimation
	8.2 Elastic deformation of concrete
		8.2.1 Elastic modulus (Ec)
		8.2.2 Factors affecting elastic modulus
		8.2.3 Estimation of elastic modulus
		8.2.4 Structural implications of elastic modulus
		8.2.5 Elastic modulus in tension
		8.2.6 Elastic modulus of high-strength concrete (HSC)
		8.2.7 Tests to determine elastic modulus
		8.2.8 Comparison of static and dynamic moduli
		8.2.9 Micro-rheological models for estimating concrete elastic modulus
	8.3 Poisson\'s ratio
		8.3.1 Estimating Poisson’s ratio
	8.4 Creep of concrete
		8.4.1 Creep expressions
		8.4.2 Characteristics of creep
		8.4.3 Structural effects of creep
		8.4.4 Factors affecting creep of concrete
		8.4.5 Estimation of creep
		8.4.6 Other aspects including theoretical considerations
		8.4.7 Creep testing of concrete
		8.4.8 Creep literature and further reading
	8.5 Shrinkage of concrete
		8.5.1 Characteristics of shrinkage
		8.5.2 Structural effects of shrinkage
		8.5.3 Factors affecting shrinkage
		8.5.4 Estimation of shrinkage
		8.5.5 Other aspects: shrinkage mechanisms and shrinkage tests
		8.5.6 Tests for shrinkage
	8.6 Creep and shrinkage of high-strength concrete (HSC)
		8.6.1 Creep of HSC
		8.6.2 Shrinkage of HSC
		8.6.3 Creep and shrinkage predictions for HSC
	8.7 Thermal movement
		8.7.1 Effect of aggregate on thermal movement
	References
Ch.9 Durability of concrete
	9.1 Introduction
	9.2 Factors affecting concrete durability
	9.3 Concrete properties in relation to durability
		9.3.1 Transport properties
		9.3.2 Mechanical and physical properties
		9.3.3 Chemical properties
	9.4 Mechanisms of deterioration
		9.4.1 General aspects
		9.4.2 Mechanical and physical processes affecting durability
		9.4.3 Chemical factors and processes affecting durability
		9.4.4 Detailed discussion of some common mechanisms of chemical attack
		9.4.5 Corrosion of reinforcement
		9.4.6 Damage caused by electromagnetic and nuclear radiation
	9.5 Guidelines for ensuring durability
		9.5.1 Concrete subjected to water-borne chemical attack
		9.5.2 Concrete subject to air-borne chemical attack
		9.5.3 Concrete subject to physical attack
		9.5.4 Design and construction considerations for ensuring durability
	9.6 Recent approaches to durability of reinforced concrete structures
		9.6.1 General
		9.6.2 From prescriptive to performance-based durability design
		9.6.3 Different strategies for service life design
		9.6.4 Service life models for reinforced concrete structures
		9.6.5 Test methods for concrete cover properties
	9.7 Performance-based durability testing, design and specification in South Africa
		9.7.1 General
		9.7.2 Durability index test methods
		9.7.3 Application of the durability index approach
	References
Ch.10 Alkali-silica reaction
	10.1 Introduction
	10.2 Reactions between alkalis and aggregate: terms used
	10.3 Alkali-silica reaction in South Africa and Namibia
	10.4 Mechanism of expansion and cracking
	10.5 Factors that influence alkali-silica reaction
		10.5.1 Alkalis
		10.5.2 Aggregate type
		10.5.3 Environmental conditions
	10.6 Minimising the risk of ASR
		10.6.1 General considerations
		10.6.2 Cement
		10.6.3 Potentially reactive aggregates
		10.6.4 Environment
	10.7 Methods and criteria for evalua-ting aggregate, cement and cementitious materials
		10.7.1 Evaluating aggregates
		10.7.2 Evaluating common cements and sup-plementary major constituents (extenders)
	10.8 Calculating the alkali content of concreting materials
		10.8.1 General
		10.8.2 CEM I cement
		10.8.3 Other SANS 50197-1 cements
		10.8.4 Mixing water
		10.8.5 Chemical admixtures
	10.9 Investigation of damaged structures
	10.10 Diagnosis of ASR in damaged structures
		10.10.1 Appearance of the structure
		10.10.2 Examination of concrete specimens
	10.11 Detailed investigation
		10.11.1 Expansion and cracking
		10.11.2 Concrete strength
		10.11.3 Structural severity rating
		10.11.4 Appraisal of durability and serviceability
	10.12 Repair procedures
		10.12.1 No more reaction and expansion
		10.12.2 Reaction and expansion continuing
	References
Ch.11 Concrete mix design
	11.1 Introduction
		11.2.1 Applying the method
	11.2 C&CI method
	11.3 Mix design for special applications
		11.3.1 Concrete mixes for pumping
		11.3.2 Air-entrained concrete (AEC)
		11.3.3 High-density concrete
		11.3.4 Low-density concrete
		11.3.5 Mixes for compaction by heavy vibration
		11.3.6 Mixes made with very fine sand
		11.3.7 Mine-shaft linings
		11.3.8 Sliding formwork
	11.4 Designing a mix by eye
	11.5 Examples of calculations
	References
Ch.12 Manufacture and handling of concrete
	12.1 Introduction
	12.2 Planning
	12.3 Production of concrete
	12.4 Control, handling and storage of materials
		12.4.1 Receiving inspection
		12.4.2 Material storage
	12.5 Batching
		12.5.1 Batching by volume
		12.5.2 Batching by mass
		12.5.3 Measurement and control of water
		12.5.4 Batching of admixtures
		12.5.5 Maintenance and calibration
	12.6 Mixing
		12.6.1 Hand mixing
		12.6.2 Machine mixing
	12.7 Transporting
		12.7.1 Loss of workability
		12.7.2 Contamination
		12.7.3 Segregation
		12.7.4 Selecting the method of transporting
		12.7.5 Types of equipment
	12.8 Placing concrete
		12.8.1 Placing concrete under water
		12.8.2 Grouted concrete
	12.9 Compaction
		12.9.1 Compaction without mechanical vibration
		12.9.2 Compaction with mechanical vibration
		12.9.3 Revibration
	12.10 Working the surface of concrete in the “green” state
	12.11 Protection and curing
		12.11.1 Protection
		12.11.2 Curing
	12.12 Concreting in cold weather
		12.12.1 Cement type
		12.12.2 Aggregate protection
		12.12.3 Lagging of water pipes
		12.12.4 Heating the mixing water
		12.12.5 Batching and mixing
		12.12.6 Concrete temperature
		12.12.7 Transporting and placing
		12.12.8 Protection and curing
	12.13 Concreting in hot weather
	12.14 Finishing concrete
	12.15 Construction joints
		12.15.1 Positioning
		12.15.2 Featuring joints
		12.15.3 Forming
	Further reading
	References
Ch.13 Formwork
	13.1 Introduction
	13.2 Purpose and requirements of formwork
	13.3 Types of formwork
		13.3.1 Permanent formwork
		13.3.2 Temporary formwork
		13.3.3 Slip-forming
		13.3.4 Climbing formwork
		13.3.5 Slab formwork principles
	13.4 Form-face materials
		13.4.1 Wood-based materials
		13.4.2 Metal form-face materials
		13.4.3 Plastics and rubber
		13.4.4 Permanent formwork
		13.4.5 Controlled permeability formwork (CPF)
	13.5 Formwork ties
	13.6 Formwork release agents
		13.6.1 Types of release agents
	13.7 Care of formwork
	13.8 Safety measures
	13.9 Striking formwork
		13.9.1 Reference to standard tables
		13.9.2 Methods to determine concrete strength before striking formwork
	13.10 Glossary
	Acknowledgements
	Further reading
	References
Ch.14 Reinforcement
	14.1 Introduction
		14.1.1 Terminology
	14.2 Types of reinforcement
		14.2.1 Mild steel bars
		14.2.2 High-yield bars
		14.2.3 Steel fabric
	14.3 Alternative reinforcement for concrete
		14.3.1 Fusion-bonded epoxy-coated steel reinforcement
		14.3.2 Galvanised steel reinforcement
		14.3.3 Stainless steel reinforcement
	14.4 Cover to reinforcement
	14.5 Control of reinforcement on site
		14.5.1 Fixing of reinforcement
		14.5.2 Splicing reinforcement
		14.5.3 Surface corrosion
	14.6 Prestressed concrete
		14.6.1 Principles
	Further reading
	References
Ch.15 Thermal properties of concrete and temperature development at early ages in large concrete elements
	15.1 Introduction
	15.2 Development of thermal stresses in concrete structures
		15.2.1 Free thermal movement of concrete
		15.2.2 Restraint of thermal movement and development of stress
		15.3.2 Thermal conductivity
	15.3 The thermal properties of concrete
		15.3.1 Specific heat capacity
	15.4 Heat evolution from cementing reactions
		15.4.1 Rate of heat evolution and the hydration process
		15.4.2 Determination of heat evolution of cementitious binders
		15.4.3 The concrete maturity heat rate
	15.5 Finite difference temperature prediction model
		15.5.1 Operation of the temperature prediction model
	15.6 Practical measures for avoiding thermal cracking at early ages
		15.6.1 Practical measures at the design and pre-construction stage
		15.6.2 Practical measures during the construction stage
	References
Temperature Model	file://Ballim Temp Model.xlsCh.16 Control of concrete quality
	16.1 Introduction
	16.2 Factors affecting quality of concrete
	16.3 Codes, specifications and control systems
	16.4 Practical quality control
		16.4.1 Target design strength
		16.4.2 Mix design
		16.4.3 Sampling and testing
		16.4.4 Acceptance criteria
		16.4.5 Presentation of control data
		16.4.6 Non-compliance
	Further reading
	References
Ch.17 High-performance concrete
	17.1 Introduction
	17.2 Constituent materials and mix design
		17.2.1 Cementitious materials
		17.2.2 Aggregates
		17.2.3 Admixtures
		17.2.4 Mix design
	17.3 Manufacture, casting and curing
		17.3.1 Concrete manufacture
		17.3.2 Placing of HPC
		17.3.3 Protection and curing of HPC
	17.4 Properties of HPC
		17.4.1 Microstructure
		17.4.2 Hardening process
		17.4.3 Hydration heat development
		17.4.4 Compressive strength
		17.4.5 Strength development
		17.4.6 Deformation characteristics
		17.4.7 Durability
		17.4.8 Costs
	17.5 Ultra-high-performance concrete
	References
Ch.18 High-density concrete
	18.1 Introduction
	18.2 Choice of materials
		18.2.1 Aggregates
		18.2.2 Cement
		18.2.3 Admixtures
	18.3 Mix proportions
	18.4 Manufacture of concrete
		18.4.1 Storage and handling of materials
		18.4.2 Transporting and placing
		18.4.3 Testing and control
	18.5 Physical properties
	References
Ch.19 Low-density concrete
	19.1 Introduction
	19.2 Low-density aggregates
		19.2.1 Furnace clinker and ash
		19.2.2 Expanded slag
		19.2.3 Expanded clay and shale
		19.2.4 Sintered fly ash
		19.2.5 Exfoliated vermiculite
		19.2.6 Expanded perlite
		19.2.7 Wood particles
		19.2.8 Plastic particles
		19.2.9 Pumice and diatomite
	19.3 Low-density-aggregate concrete
		19.3.1 Materials
		19.3.2 Production and manufacture
		19.3.3 Properties
	19.4 Cellular or aerated concrete
		19.4.1 Gas concrete
		19.4.2 Foamed concrete
	19.5 Durability of low-density concrete
	Further reading
	References
Ch.20 Self-compacting concrete
	20.1 Introduction
	20.2 Fresh concrete properties
		20.2.1 Rheology
		20.2.2 Workability
		20.2.3 Filling ability
		20.2.4 Segregation resistance
		20.2.5 Passing ability
	20.3 Testing of fresh concrete properties
		20.3.1 Slump flow test
		20.3.2 Slump flow test and blocking resistance
		20.3.3 V-funnel test
		20.3.4 U-box test
		20.3.5 L-box test
		20.3.6 Segregation resistance (sieve) test
	20.4 Specifying SCC based on fresh concrete properties
	20.5 Mix design principles
		20.5.1 Introduction
		20.5.2 Mix design according to the General Method
		20.5.3 Limiting values for mix proportions
	20.6 Constituent materials
		20.6.1 General
		20.6.2 Cement and additional powder materials
		20.6.3 Aggregates
		20.6.4 Admixtures
	20.7 Mixing, handling and curing
	20.8 Hardened concrete properties
		20.8.1 General
		20.8.2 Deformation and volume change
		20.8.3 Durability
	Further reading
	References
Ch.21 Fibre-reinforced concrete
	21.1 Introduction
	21.2 Types of fibre
		21.2.1 Glass
		21.2.2 Steel
		21.2.3 Synthetic fibres
		21.2.4 Natural fibres
	21.3 Theoretical considerations
		21.3.1 Introduction
		21.3.2 Fundamentals of fibre reinforcement
		21.3.3 Fibre effectiveness
		21.3.4 Stress-strain behaviour
		21.3.5 The concept of toughness
	21.4 New developments
		21.4.1 High-performance fibre-reinforced cement-based composites
		21.4.2 Textile concrete
	Further reading
	References
Ch.22 Precast concrete products
	22.1 Introduction
	22.2 Masonry units and paving blocks
		22.2.1 Characteristics
		22.2.2 Manufacture
		22.2.3 Development of strength
		22.2.4 Water content
		22.2.5 Mix proportions
		22.2.6 Determining the best blend of aggregates
		22.2.7 Curing
	22.3 Concrete retaining blocks
		22.3.1 Characteristics
		22.3.2 Manufacture
	22.4 Precast concrete suspended slabs
		22.4.1 Characteristics
		22.4.2 Manufacture
	22.5 Concrete pipes
		22.5.1 Manufacture
	22.6 Concrete roof tiles
		22.6.1 Characteristics
		22.6.2 Manufacture
	Further reading
	References
Ch.23 Shotcrete
	23.1 Introduction
	23.2 Uses of shotcrete
	23.3 Shotcreting processes
		23.3.1 Dry-mix process
		23.3.2 Wet-mix process
	23.4 Materials
		23.4.1 Cementitious materials
		23.4.2 Aggregates
		23.4.3 Water
		23.4.4 Admixtures
		23.4.5 Reinforcement
	23.5 Shotcrete mix design
	23.6 Manufacture and placing of shotcrete
		23.6.1 Mixing and batching
		24.6.2 Placing time
		23.6.3 Placing equipment
		23.6.4 Surface preparation
		23.6.5 Reinforcement
		23.6.6 Addition of water
		23.6.7 Rebound
		23.6.8 Curing
		23.6.9 Safety, health and environment
		23.6.10 Shotcrete operators
	23.7 Testing
		23.7.1 Thickness control
		23.7.2 Surface finish
		23.7.3 Compressive strength
		24.7.4 Workability of fresh shotcrete
		23.7.5 Density
		23.7.6 Toughness and energy absorption
		23.7.7 Bond strength
	23.8 Properties of hardened shotcrete
		23.8.1 Water content
		23.8.2 Compressive strength and variability
		23.8.3 Density
		23.8.4 Drying shrinkage
	23.9 Fibre-reinforced shotcrete
	References
Ch.24 Roller-compacted concrete
	24.1 Introduction
	24.2 Properties of RCC
	24.3 RCC for dams
		24.3.1 Introduction
		24.3.2 Modern RCCs
		24.3.3 Materials
		24.3.4 Mix parameters
		24.3.5 Mix proportioning methods
		24.3.6 Construction
		24.3.7 Quality control
	24.4 RCC for pavements
		24.4.1 Introduction
		24.4.2 Materials
		24.4.3 Mix proportioning
		24.4.4 Thickness design
		24.4.5 Subgrades and subbases
		24.4.6 Control of transverse cracking
		24.4.7 Joint sealing
		24.4.8 Construction
	Further reading
	References
Ch.25 No-fines concrete
	25.1 Introduction
	25.2 Applications
	25.3 Materials
		25.3.1 Cement
		25.3.2 Water
		25.3.3 Aggregates
	25.4 Mix proportions
	25.5 Manufacture
		25.5.1 Batching and mixing
		25.5.2 Placing
		25.5.3 Construction joints
		25.5.4 Formwork
		25.5.5 Reinforcement
		25.5.6 Curing
		25.5.7 Provision for services
		25.5.8 Rendering and plastering
		25.5.9 Screeding of NFC
		25.5.10 Weep-holes
	25.6 Physical properties
		25.6.1 Compressive strength
		25.6.2 Other strengths
		25.6.3 Density
		25.6.4 Drying shrinkage
		25.6.5 Absorptiveness
		25.6.6 Capillary action
		25.6.7 Thermal properties
	References
Ch.26 Sand-cement mixes – mortars, plasters, and screeds
	26.1 Introduction
	26.2 Mortar and plaster
		26.2.1 Materials
		26.2.2 Mix proportions for normal applications
		26.2.3 Properties of fresh mortar and plaster
		26.2.4 Properties of hardened mortar and plaster
		26.2.5 Practical assessment of sand quality and workability of mixes
		26.2.6 Applications
		26.2.7 Common problems
		26.2.8 Estimating quantities and wastage
	26.3 Sand-cement floor screeds
		26.3.1 Materials
		26.3.2 Mix proportions for normal applications
		26.3.3 Properties of fresh sand-cement screed mixes
		26.3.4 Properties of hardened sand-cement screed mixes
		26.3.5 Practical assessment of sand quality for screeds and workability of mixes
		26.3.6 Applications
		26.3.7 Common problems
		26.3.8 Estimating quantities and wastage
	Further reading
	References
Ch.27 Concrete repair
	27.1 Introduction
	27.2 Condition assessment of concrete structures
		27.2.1 Methodology
		27.2.2 In-situ assessment
		28.2.3 Laboratory tests
	27.3 Repair strategies and techniques
		27.3.1 General considerations
		27.3.2 Repair principles for structures damaged by reinforcement corrosion
		27.3.3 Patch repairs and bonded concrete overlays
		27.3.4 Surface protection systems and coatings
		27.3.5 Penetrating corrosion inhibitors
		27.3.6 Temporary electrochemical techniques
		27.3.7 Cathodic protection systems
		27.3.8 Crack repair
		27.3.9 Structural strengthening
	References
Index
Exit




نظرات کاربران