ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب From Synapses to Rules: Discovering Symbolic Rules from Neural Processed Data

دانلود کتاب از سیناپس تا قوانین: کشف قوانین نمادین از داده های پردازش شده عصبی

From Synapses to Rules: Discovering Symbolic Rules from Neural Processed Data

مشخصات کتاب

From Synapses to Rules: Discovering Symbolic Rules from Neural Processed Data

ویرایش: [1 ed.] 
نویسندگان: , , , , ,   
سری:  
ISBN (شابک) : 9781461352044, 9781461507055 
ناشر: Springer US 
سال نشر: 2002 
تعداد صفحات: 388
[371] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 28 Mb 

قیمت کتاب (تومان) : 35,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب From Synapses to Rules: Discovering Symbolic Rules from Neural Processed Data به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب از سیناپس تا قوانین: کشف قوانین نمادین از داده های پردازش شده عصبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب از سیناپس تا قوانین: کشف قوانین نمادین از داده های پردازش شده عصبی



یکی از توانایی های سطح بالای مغز انسان درک آنچه آموخته است. به نظر می رسد که این مزیت بسیار مهم در مقایسه با فعالیت مغزی دیگر پستانداران است. در حال حاضر ما از نظر فناوری تقریباً آماده هستیم تا بافت مغز انسان را به طور مصنوعی بازتولید کنیم، اما هنوز به طور کامل پردازش اطلاعات و مکانیسم‌های بیولوژیکی مرتبط زیربنای این توانایی را درک نکرده‌ایم. بنابراین یک کلون الکترونیکی از مغز انسان هنوز تا تحقق پذیری فاصله دارد. در عین حال، حدود بیست سال پس از احیای پارادایم پیوندگرا، ما هنوز از نگرش زیر نمادین معمولی دستگاه‌هایی مانند شبکه‌های عصبی راضی نیستیم: می‌توانیم آنها را وادار کنیم تا حل مشکلات حتی دشوار را بیاموزیم، اما بدون توضیح واضح چرایی. یک راه حل کار می کند در واقع، برای استفاده گسترده از این دستگاه ها به روشی قابل اعتماد و غیر ابتدایی، به بیان رسمی و قابل فهم عملکردهای آموخته شده نیاز داریم. از آزمایش، دستکاری و ترکیب با اینها باید عبارات مشابه دیگری برای ساخت توابع ساختارمندتر به عنوان راه حلی از مسائل پیچیده از طریق روش های قیاسی معمول هوش مصنوعی مستعد باشند. تلاش‌های زیادی در سال‌های گذشته در این جهت انجام شده است، و سیستم‌های ترکیبی مصنوعی ساخته شده‌اند که در آن همکاری بین پردازش زیر نمادین شبکه‌های عصبی در حالت‌های مختلف با الگوریتم‌های نمادین ادغام می‌شود. به موازات آن، تحقیقات عصب‌شناسی به ارائه توضیحات بیشتر و دقیق‌تر از پدیده‌های سطح پایین مسئول فرآیندهای ذهنی ادامه می‌دهد.


توضیحاتی درمورد کتاب به خارجی

One high-level ability of the human brain is to understand what it has learned. This seems to be the crucial advantage in comparison to the brain activity of other primates. At present we are technologically almost ready to artificially reproduce human brain tissue, but we still do not fully understand the information processing and the related biological mechanisms underlying this ability. Thus an electronic clone of the human brain is still far from being realizable. At the same time, around twenty years after the revival of the connectionist paradigm, we are not yet satisfied with the typical subsymbolic attitude of devices like neural networks: we can make them learn to solve even difficult problems, but without a clear explanation of why a solution works. Indeed, to widely use these devices in a reliable and non elementary way we need formal and understandable expressions of the learnt functions. of being tested, manipulated and composed with These must be susceptible other similar expressions to build more structured functions as a solution of complex problems via the usual deductive methods of the Artificial Intelligence. Many effort have been steered in this directions in the last years, constructing artificial hybrid systems where a cooperation between the sub symbolic processing of the neural networks merges in various modes with symbolic algorithms. In parallel, neurobiology research keeps on supplying more and more detailed explanations of the low-level phenomena responsible for mental processes.





نظرات کاربران