دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Paolo Barbante, Francesco D. Belgiorno, Silvia Lorenzani, Lorenzo Valdettaro سری: Springer INdAM Series, 51 ISBN (شابک) : 9811964610, 9789811964619 ناشر: Springer سال نشر: 2023 تعداد صفحات: 285 [286] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب From Kinetic Theory to Turbulence Modeling: The Legacy of Carlo Cercignani به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب از نظریه جنبشی تا مدلسازی آشفتگی: میراث کارلو سرسینانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مشارکتهای مرتبط ارائه شده در کنفرانسی را که به افتخار کارلو سرچینیانی در Politecnico di Milano در 24 تا 28 مه 2021 برگزار شد، جمعآوری میکند. حوزههای تحقیقاتی متفاوتی که کار علمی کارلو سرچینیانی را مشخص میکنند، با تمرکز ویژه در نظر گرفته شدهاند. : روش های ریاضی و عددی برای معادلات جنبشی. مدل سازی جنبشی مخلوط های گازی و گازهای چند اتمی؛ کاربردهای معادله بولتزمن برای انتقال الکترون، پدیدههای اجتماعی و گسترش اپیدمی مدل سازی آشفتگی; برنامه کلاسیک اینشتین؛ نظریه سیستم های دینامیکی.
The book collects relevant contributions presented at a conference, organized in honour of Carlo Cercignani, that took place at Politecnico di Milano on May 24–28, 2021. Different research areas characterizing the scientific work of Carlo Cercignani have been considered with a particular focus on: mathematical and numerical methods for kinetic equations; kinetic modelling of gas mixtures and polyatomic gases; applications of the Boltzmann equation to electron transport, social phenomena and epidemic spread; turbulence modelling; the Einstein Classical Program; Dynamical Systems Theory.
Preface Contents About the Editors The ``Divertissements'' of Carlo Cercignani Appendix References Tensorial Turbulent Viscosity Model for LES: Properties and Applications 1 Equations 2 A priori tests 3 Boundary layer 4 Rayleigh–Bénard 5 Conclusions References FPU Model and Toda Model: A Survey, a View 1 Introduction 1.1 FPU in a Nutshell 1.2 The Search for an Underlying Integrable Dynamics 1.3 Different Phenomena at Different Time Scales 2 The Long-Time Motion Across Toda Tori 3 Investigating the FPU State 3.1 Scalings Laws from the Dynamics 3.2 Scaling Laws from Toda Actions 3.3 A Conclusion? References Half-Space Problems for the Boltzmann Equation of Multicomponent Mixtures 1 Kinetic Half-Space Problem for Mixtures 2 Discrete Velocity Models for Mixtures 3 Half-Space Problem for the Full Boltzmann Equation 3.1 Brief Outline of Main Steps of the Proof of Theorem 2 References BGK Model for a Mixture with Two Reversible Reactions 1 Introduction 2 Physical Setting and Kinetic Approach 3 BGK Model 4 Conclusions References On a Class of Self-Similar Solutions of the Boltzmann Equation 1 Introduction 2 Statement of the Problem 3 Eigenvalue Problem for Matrices 4 Main Results 5 Conclusions References The Einstein Classical Program, the Wheeler-Feynman Reabsorption and Kirchhoff's Law 1 Introduction 2 The Wheeler-Feynman Approach to the Electrodynamics of Charges in Bulk: The Idea of a Reabsorption or Cancellation Making Undamped Motions Possible 2.1 The Dirac-Wheeler-Feynman Equations of Motion 2.1.1 Conceptual Problems for the Dirac Equation: The Idea of Wheeler and Feynman 3 The Reabsorption Property, or Cancellation, as the Main Content of the Wheeler-Feynman Electrodynamics for Matter in Bulk 3.1 First Step: The Oseen Identity 3.1.1 A Global Formulation: The Wheeler-Feynman Identity Inspired to Dirac's Radiation Field 3.1.2 A Further Little Step: A Sufficient Condition for the Reabsorption Property, as an Uncorrelation Property of the ``material'' Electric Current 4 The Wheeler-Feynman Reabsorption Property Checked in Particular Models: The Case of Ionic Crystals 4.1 The Ionic Crystals Model 4.1.1 Proof of the Wheeler-Feynman Identity, and the Existence of Dispersion Relations 4.1.2 Existence of Polaritons 5 Conclusion References Reabsorption and Density Limit in Magnetized Plasmas Through a First-Principles Toy Model 1 Introduction 2 The Model, and Its Analytic Solution Through Normal Modes 2.1 The Model 2.1.1 Analytic Treatment Through Normal Modes 2.1.2 The Wheeler–Feynman Identity as Guaranteeing the Existence of a Dispersion Relation 2.1.3 Evidence for the Density-Induced Instability, and Estimate of a Density Limit 3 Conclusion References Kinetic Effects in Non-ideal, Two-Phase Shear Flows 1 Introduction 2 The Enskog–Vlasov Model 2.1 Simplified Moment Approximation of the Linearized EV Equation 3 Test Problem Formulation 4 Numerical Results 4.1 Ideal Vapor Phase and Comparison with BE 4.2 Non-Ideal Vapor Phase 5 Conclusions References The Cercignani Conjecture About a Classical Zero-Point Energy, and Its Confirmation for Ionic Crystals 1 Introduction 2 The Ionic Crystal Model 3 The Computed Spectra 4 Discussion of the Results 5 Conclusions References Turbulence Without Fluctuations 1 Introduction 2 Fluctuation-Conditioned Turbulence 3 Turbulence Without Fluctuations 4 Conclusions References An Ellipsoidal-Statistical (ES) Model for a Polyatomic Gas with Temperature-Dependent Specific Heats 1 Introduction 2 ES Model for a Gas with Temperature-Dependent Specific Heats 3 Basic Properties 4 Navier–Stokes Equations 5 Boundary Conditions for Navier–Stokes Equations References Discrete- and Continuous-Time Random Walks in 1D Lévy Random Medium 1 Introduction 1.1 General Notation 2 Discrete-Time Random Walk 2.1 Finite Mean Distance Between Targets, Quenched Theorems 2.2 Finite Mean Distance Between Targets, Annealed Theorems 2.3 Infinite Mean Distance Between Targets, Annealed Theorems 3 Continuous-Time Random Walk 3.1 Finite Mean Distance Between Targets, Quenched Theorems 3.2 Finite Mean Distance Between Targets, Annealed Theorems 3.3 Infinite Mean Distance Between Targets, Annealed Theorems 4 A Brief Discussion on Perspectives References Mesoscale Modelling of the Tolman Length in Multi-componentSystems List of Symbols 1 Introduction 2 Lattice Boltzmann Model 3 Method 4 Results 5 Conclusions References Kinetic and Macroscopic Epidemic Models in Presence of Multiple Heterogeneous Populations 1 Introduction 2 Interplay Between Contact Distribution and Epidemic Dynamics 2.1 Formation of the Contact Distribution 2.2 The Kinetic Model 2.3 Saturated Incidence Rate 3 Numerical Results 4 Conclusion and Perspectives References Electron Transport in Graphene Nanoribbons 1 Introduction 2 Semiclassical Charge Transport in Graphene 3 Numerical Scheme 4 Numerical Results and Mobility Models 5 Conclusions References A Review on a General Multi-Species BGK Model: Modelling, Theory and Numerics 1 Introduction 2 The General BGK Model for Gas Mixtures 3 Theoretical Results of This Model 4 Possible Choices and Meaning of the Free Parameters 5 On Existing Numerical Schemes 6 Conclusions and Outlook References Gas-Kinetic Methods for Turbulent Flow 1 Introduction 2 Gas-Kinetic Scheme 2.1 Gas Model at the Interface Between Two Computational Cells 2.2 Numerical Fluxes 2.3 Artificial Dissipation 2.4 Boundary Conditions 3 Extension of the Gas-Kinetic Scheme to Turbulent Flow 3.1 Relaxation Time Based on Eddy Viscosity 3.2 Modification of the Timescales Ratio 3.3 Second-Order Turbulent Stress Tensor Obtained from the Second-Order Chapman–Enskog Expansion 3.4 Boundary Conditions for Turbulent Flow 4 Gas-Kinetic Schemes for RANS 4.1 Flow Around a Supercritical Aerofoil in Transonic Regime 4.2 Supersonic Compression Corner at Mach 5 5 Discussion 6 Conclusions References Density Functional Kinetic Theory for Soft Matter 1 Introduction 2 Density Functional Theory 3 Density Functional Kinetic Theory 4 Families of Lattice DFKT 4.1 Free-Energy Lattice Models 4.2 Lattice Many-Body Models 4.3 Lattice Chromodynamic DFKT 4.3.1 Near-Contact Interactions 5 Applications: Simulating Dropland 5.1 Dense Emulsions and Soft Granular Materials 6 Summary and Future Outlook References A Multi-Agent Description of Social Phenomena with Lognormal Equilibria 1 Introduction 2 Gibrat's Law and Distribution of Firms 3 Distribution of Winnings in a Multi-Agent Jackpot Game 4 Social Phenomena with Lognormal Equilibria 5 Conclusions References Oscillatory Rarefied Gas Flows in Long Capillaries 1 Introduction 2 Linear Oscillatory Fully Developed Binary Gas Mixture Flow 3 Nonlinear Oscillatory Fully Developed Single Gas Flow 4 Concluding Remarks References