دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Domenico Cantone (editor). Alfredo Pulvirenti (editor)
سری:
ISBN (شابک) : 3031552474, 9783031552472
ناشر: Springer
سال نشر: 2024
تعداد صفحات: 287
[280]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 Mb
در صورت تبدیل فایل کتاب From Computational Logic to Computational Biology: Essays Dedicated to Alfredo Ferro to Celebrate His Scientific Career (Lecture Notes in Computer Science, 14070) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب از منطق محاسباتی تا زیست شناسی محاسباتی: مقالاتی که به آلفردو فرو برای جشن گرفتن حرفه علمی او تقدیم شده است (یادداشت های سخنرانی در علوم کامپیوتر، 14070) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تأثیر آلفردو فرو بر فناوری اطلاعات حوزه های مختلفی را شامل می شود که منطق محاسباتی، داده کاوی، بیوانفورماتیک و سیستم های پیچیده را در بر می گیرد. او پس از تحصیل در رشته ریاضیات در دانشگاه کاتانیا، مدرک دکترای خود را دریافت کرد. در علوم کامپیوتر از دانشگاه نیویورک در سال 1981، تحت نظارت جاکوب تئودور (جک) شوارتز کار می کند. او به دانشگاه کاتانیا بازگشت و در آنجا برنامه لیسانس علوم کامپیوتر را تأسیس کرد و به عنوان هماهنگ کننده Ph.D. برنامه در علوم کامپیوتر، یکی از بنیانگذاران Ph.D. برنامه در زیست شناسی، ژنتیک انسانی، و بیوانفورماتیک، و به عنوان یک استاد تمام در سال 2021 بازنشسته شد. حرفه دانشگاهی آلفردو به عنوان یک دانشمند کامپیوتر با دو مرحله تحقیقاتی مشخص مشخص می شود: منطق محاسباتی تا تقریباً 1995، و به دنبال آن تمرکز قابل توجهی بر داده کاوی و بیوانفورماتیک . مشارکتهای موجود در این جلد، کیفیت و دامنه موفقیتهای شخصی و مشارکتی او را نشان میدهد. او همچنین به بسیاری از دانشمندان عالی الهام بخشید. یک ابتکار پیشگام، ایجاد مدارس تابستانی برای دکتری بود. دانش آموزان در سال 1989، منجر به به اصطلاح مدرسه لیپاری، اکنون J.T. مدرسه بین المللی شوارتز برای تحقیقات علمی، جایی که آلفردو همچنان به عنوان مدیر خدمت می کند. این مجموعه معتبر شامل مدارسی است که بر علوم کامپیوتر، سیستمهای پیچیده و زیستشناسی محاسباتی متمرکز شدهاند و دانشمندان در کلاس جهانی را به عنوان مدرس و مربی در آن حضور دارند.
Alfredo Ferro’s impact on information technology has traversed diverse domains, encompassing Computational Logic, Data Mining, Bioinformatics, and Complex Systems. After first studying Mathematics at the University of Catania, he received a Ph.D. in Computer Science from NYU in 1981, working under the supervision of Jacob Theodor (Jack) Schwartz. He returned to the University of Catania where he established the Computer Science undergraduate program, served as the coordinator of the Ph.D. program in Computer Science, cofounded the Ph.D. program in Biology, Human Genetics, and Bioinformatics, and retired as a full professor in 2021. Alfredo’s academic career as a computer scientist is characterized by two distinct research phases: Computational Logic until approximately 1995, followed by a notable focus on Data Mining and Bioinformatics. The contributions in this volume reflect the quality and the scope of his personal and collaborative successes. He also taught andinspired many excellent scientists. A pioneering initiative was to establish summer schools for Ph.D. students in 1989, leading to the so-called Lipari School, now the J.T. Schwartz International School for Scientific Research, where Alfredo continues to serve as director. This prestigious series includes schools focused on Computer Science, Complex Systems, and Computational Biology, featuring world-class scientists as lecturers and mentors.
Preface Grazie Alfredo! Reviewers of This Volume Acknowledgements Contents Computational Logic The Early Development of SETL References Onset and Today's Perspectives of Multilevel Syllogistic 1 An Inference Mechanism for Membership 1.1 The Discovery of Multi-level Syllogisic, Dubbed MLS 1.2 `79/'80: Proof-Technology Seminar at NYU 1.3 The Decidability of MLS in a Nutshell 2 Early Offsprings of Multilevel Syllogistic 2.1 ``Any New Results?'' 2.2 Enhancements of Multilevel Syllogistic in Catania 2.3 Multilevel Syllogistic in New York Again 2.4 A Downsizing and Broadenings of MLS 3 Applications of Multilevel Syllogistic 3.1 Algorithm Correctness Verification 3.2 Program Transformation 3.3 Declarative Set-Based Programming 3.4 Hybrid Syllogistics 3.5 Reasoners for Description Logics 3.6 Proof-Verification: Yulog, AXL,…, ÆtnaNova 4 Evolving Trends 4.1 Boundaries of the Undecidable and of Infinitude 4.2 Syllogizing About Individuals and Nested Sets 4.3 The Long-Lasting Fortune of {log} 4.4 The Long March Towards Computational Set Theory References An Automatically Verified Prototype of a Landing Gear System 1 Introduction 2 Overview of {log} 2.1 The Theories 2.2 Set Terms 2.3 Set and Relational Operators 2.4 {log} Formulas 2.5 Types in {log} 2.6 Constraint Solving 3 Using {log} 3.1 {log} as a Programming Language 3.2 {log} as an Automated Theorem Prover 4 Encoding the Event-B Specification of the LGS in {log} 4.1 Encoding Event-B Machines 4.2 Encoding (Partial) Functions 4.3 Encoding Action Predicates 4.4 Encoding Quantifiers 4.5 Encoding Types 5 Encoding Proof Obligations in {log} 6 Discussion and Comparison 7 Final Remarks References A Sound and Complete Validity Test for Formulas in Extensional Multi-level Syllogistic 1 Introduction 2 Entities: Individuals and Sets 3 Definition of the Language 4 Interpretations 5 Classification of Interpretation 6 Abbreviations, Truth-Value Assignments 7 Models, Satisfiability, and Validity 8 Superstructures 9 Narrowing down the Notion of Interpretation 10 First Simplifications of the Decision Problem for Validity 11 Further Simplifications of the Validity Problem 12 Decidability of the Validity Problem 13 Completeness Theorem 14 Soundness Theorem: 1st Version 15 Proof of the Soundness Theorem, 1st Version 16 Soundness Theorem: 2nd Version 17 Getting Rid of Individuals 18 A Language for 2-Level Syllogistic 19 A Connection Between 2-Level Syllogistic and Multi-level Syllogistic A Appendix 1 B Appendix 2 References Computational Biology and Complex Systems Advances in Network-Based Drug Repositioning 1 Introduction 2 Recent Review Articles 3 Eighteen Network-Based Results 3.1 Taguchi et al. Tensor Decomposition 3.2 Ruiz et al. Multiscale-Interactome 3.3 Fiscon et al. SaveRUNNER 3.4 Gysi et al. a Multimodal Approach 3.5 Lucchetta et al. DrugMerge 3.6 Zhou et al. a Network Proximity Measure 3.7 Sadegh et al. CoVex 3.8 Mall et al. Drug Autoencoder 3.9 Maria et al. 2021: PHENSIM 3.10 Ge et al. NeoDTI Applied to COVID-19 3.11 Saberian et al. Learning the Similarity Metric 3.12 Peyvandipour et al. DrugDiseaseNet 3.13 Draghici et al. iPathwayGuide 3.14 Stolfi et al. DIAMOND Applied to COVID-19 3.15 Muratov et al. Viribus Unitis 3.16 Cheng et al. Complementary Exposure 3.17 Zitnik et al. Decagon 3.18 Gordon et al. a Direct Proteomic Approach 4 Discussion 4.1 Data Availability 4.2 Relationship to Clinical Trials 4.3 Network Construction Vs Network Usage 4.4 End-to-end and Intermediate Validations 4.5 Efficacy vs Adverse Effects 4.6 New and Legacy Software Tools 4.7 AI and Network-Based Methods 4.8 Pharmaco-Chemical Kinetics 4.9 Precision Medicine and Biomarkers 4.10 Drug Combinations 4.11 Comparative Assessment of Network-Based Methods 5 Conclusion References Integer Programming Based Algorithms for Overlapping Correlation Clustering 1 Introduction 2 Preliminaries and Problem Definition 3 Methods 3.1 ILP-Based Algorithms 3.2 Row-Based Clustering 3.3 Column-Based Clustering 3.4 Performance Evaluation 4 Results 5 Conclusions and Future Work References Deep Learning Models for LC-MS Untargeted Metabolomics Data Analysis 1 Introduction 1.1 Metabolomics 1.2 Liquid Chromatography Mass Spectrometry 1.3 LC-MS Metabolomics Data Analysis and Interpretation 1.4 Machine Learning Applied to Untargeted Metabolomics 1.5 Deep Learning Applied to Untargeted Metabolomics 2 Overview of DL Methods 3 DL Methods for Pre- and Postprocessing Metabolomics Data 3.1 Peakonly: A DL Model for Detecting and Integrating Peaks 3.2 NeatMS: A DL-Based Post Processing Tool to Remove Low Quality Peaks 3.3 NormAE: The Normalized Autoencoder for Removing Batch Effects 4 DL Methods for Metabolite Annotation 4.1 GNN-RT: Improving Metabolite Annotation by Predicting RT Using Graph Neural Networks 4.2 DeepMASS: Structural Similarity Scoring of Unknown Metabolites Using Deep Neural Networks 4.3 MS2DeepScore: A Siamese Neural Network for Predicting the Structural Similarity of MS/MS Fragmentation Spectra 4.4 CANOPUS: A Computational Tool for Systematic Compound Class Annotation 4.5 DarkChem: A Variational Autoencoder for Creating a Massive in Silico Library 5 Conclusions References The Search for Cancer Drivers 1 Oncogenes, Tumor Suppressors and the Hallmarks of Cancer 2 The Investigation of Driver Mutations 2.1 Consensus Approaches for Driver Discovery 3 Exploiting Pathway and Gene Set Information to Power the Discovery of Driver Mutations 4 Identification of Driver Copy Number Alterations 5 Identification of Driver Gene Fusions 6 Driver Identification Through Regulatory Network Analysis 7 Multi-omics Approaches for the Identification of Cancer Drivers 8 Identification of Non-coding Drivers 9 Patient-Specific Drivers and Precision Medicine 10 Databases of Cancer Drivers 11 Conclusions References Inferring a Gene Regulatory Network from Gene Expression Data. An Overview of Best Methods and a Reverse Engineering Approach 1 Introduction 2 Background 2.1 Gene Regulatory Network 2.2 Inferring Gene Regulatory Networks 3 Methodologies 3.1 Information Theory Methods 3.2 Boolean Networks 3.3 Differential Equations 3.4 Machine Learning 3.5 Reverse Engineering 4 Validation 5 Results 6 Conclusions References Efficient Random Strategies for Taming Complex Socio-economic Systems 1 Introduction 2 The Peter Principle 3 Improving Democracy by Lot 4 Random Strategies in Financial Markets 4.1 The ``micro'' Perspective 4.2 The ``macro'' Perspective 4.3 ``Micro'' Within ``macro'' Perspective 4.4 Conclusive Remarks and Policy Suggestions 5 Talent, Luck and Success 5.1 The TvL Model 5.2 The Origin of Heavy Tailed Distributions in the TvL Model 5.3 Success in Scientific Research and Funding Policies 6 Conclusions References Critical Density for Network Reconstruction 1 Introduction 2 General Setting 2.1 The Reconstruction Method 2.2 Transition from Reconstructability to Unreconstructability 3 Specific Cases 3.1 Homogeneous Networks 3.2 Core-Periphery Structure 3.3 Arbitrary Strength Distribution 4 The Role of Induced Self-loops 5 Reconstructed Networks from Bankscope Data 5.1 Dataset 5.2 Network Reconstruction 6 Conclusions References Motif Finding Algorithms: A Performance Comparison 1 Introduction 2 Motif Finding Problem 2.1 Preliminary Definitions 2.2 Measures of Statistical Significance 2.3 Approaches 3 Motif Finding Tools 3.1 FANMOD 3.2 Kavosh 3.3 mFinder 3.4 MAVisto 3.5 gtrieScanner 3.6 NetMODE 3.7 QuateXelero 3.8 FaSE 3.9 Acc-Motif 3.10 NeMo 3.11 PGD: Parallel Graphlet Decomposition 4 Experimental Analysis 4.1 Dataset Description 4.2 Results 5 Perspectives and Future Work References Author Index