دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Manolis G. Kavussanos, Dimitris A. Tsouknidis and Ilias D. Visvikis سری: Routledge Maritime Masters ISBN (شابک) : 9780367360795, 9780429343681 ناشر: Routledge سال نشر: 2021 تعداد صفحات: [555] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 Mb
در صورت تبدیل فایل کتاب Freight Derivatives and Risk Management in Shipping به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مشتقات حمل و نقل و مدیریت ریسک در کشتیرانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
"این کتاب درسی کاربردی پیشرفته با موضوع تجزیه و تحلیل، اندازه گیری و مدیریت ریسک در صنعت کشتیرانی می پردازد. منابع ریسک در تجارت کشتیرانی را شناسایی و تجزیه و تحلیل می کند و استراتژی های "سنتی" و "مدرن" برای مدیریت ریسک را به تفصیل بررسی می کند. هم در سطوح سرمایه گذاری و هم سطح عملیاتی کسب و کار. صاحبان کشتی، متخصصان صنعت کشتیرانی، افسران مدیریت ریسک، افسران اعتبار، تاجران، سرمایه گذاران، دانشجویان و محققان این کتاب را ضروری می یابند تا بفهمند که چگونه مدیریت ریسک و ابزارهای پوشش ریسک می تواند باعث شود تفاوت برای شرکت ها برای ماندن در رقابت و جلوتر از بقیه"--
"This advanced practical textbook deals with the issue of risk analysis, measurement and management in the shipping industry. It identifies and analyses the sources of risk in the shipping business and explores in detail the "traditional" and "modern" strategies for risk management at both the investment and operational levels of the business. Shipowners, professionals in the shipping industry, risk management officers, credit officers, traders, investors, students and researchers will find the book indispensable in order to understand how risk management and hedging tools can make the difference for companies to remain competitive and stay ahead of the rest"--
Cover Half Title Series Page Title Page Copyright Page Contents Preface to the second edition Preface to the first edition List of abbreviations 1 Introduction to the shipping markets and their empirical regularities 1.1 Introduction 1.2 Market segmentation of the shipping industry 1.2.1 General cargo and bulk cargo movements 1.2.2 Bulk-cargo segmentation 1.2.3 General (dry) cargo segmentation 1.3 Market conditions in shipping freight markets 1.4 Equilibrium freight rates in tramp freight markets 1.4.1 Freight rates for different duration contracts 1.4.2 Term structure of freight rate contracts 1.4.3 Seasonality in freight rate markets 1.4.3.1 Case 1: Seasonality patterns in dry-bulk markets 1.4.3.1.1 Spot market seasonality 1.4.3.1.2 One-year T/C seasonality 1.4.3.1.3 Three-year T/C seasonality 1.4.3.1.4 Seasonality comparisons between vessel types and contract durations 1.4.3.1.5 Seasonality patterns under different market conditions 1.4.3.2 Case 2: Seasonality patterns in tanker markets 1.4.3.3 Case 3: Seasonality strategies 1.5 Vessel prices and vessel price risks 1.5.1 Vessels as capital assets 1.5.2 Market efficiency in the markets for vessels 1.6 Summary 2 Business risks analysis in shipping and traditional risk management strategies 2.1 Introduction 2.2 The sources of risk in the shipping industry 2.3 Business decisions faced by the international investor 2.4 The cash-flow position of the shipowner 2.5 Volatilities of spot and time-charter rates in shipping 2.5.1 Time-varying freight rate volatilities for different sub-sectors 2.5.2 Time-varying freight rate volatilities for contracts of different duration 2.5.3 Volatilities (risks) in different vessel markets 2.5.3.1 Time-varying volatilities of different vessel sizes 2.6 Volatility spillovers across shipping segments 2.7 Correlations amongst shipping sub-sectors and portfolio diversification 2.8 Summary of traditional risk management strategies 2.9 Risk management and the use of derivatives in the shipping industry 2.10 Summary 3 Introduction to financial derivatives 3.1 Introduction 3.2 The economic functions and benefits of financial derivatives 3.3 The risks associated with financial derivatives 3.4 Types of participants in derivatives markets 3.5 Forward and futures contracts 3.5.1 Market positions (long and short) 3.5.2 Mark-to-market and clearing 3.5.3 Basis and basis risk 3.5.4 Optimal hedge ratio determination 3.5.5 Pricing and the cost-of-carry model 3.5.5.1 Example 1: Contango market: Futures/forward price higher than the spot price 3.5.5.2 Example 2: Normal backwardation: Futures/forward price lower than the spot price 3.5.6 Pricing examples for different underlying assets 3.5.6.1 Case 1: Forward price of asset with no income 3.5.6.2 Case 2: Forward price of asset with income 3.5.6.3 Case 3: Forward price of assets with known yield and stock indices 3.5.6.4 Case 4: Forward price of currency contracts 3.5.6.5 Case 5: Forward price of assets that are held for investment purposes 3.5.6.6 Case 6: Forward price of assets that are held for consumption 3.5.6.7 Case 7: Forward price of non-storable assets 3.6 Swap contracts 3.6.1 Pricing of swap contracts 3.6.1.1 Case 1: Pricing interest rate swaps 3.6.1.2 Case 2: Pricing currency swaps 3.7 Option contracts 3.7.1 Payoffs of option contracts 3.7.2 Hedging with option contracts 3.7.3 Options versus futures/forwards 3.7.4 Intrinsic and time value of options 3.7.5 Factors influencing option prices and the “Greeks” 3.7.5.1 Price of underlying asset (S) 3.7.5.2 Strike or exercise price (X) 3.7.5.3 Time to expiration (T) 3.7.5.4 Price volatility of the underlying asset (σ) 3.7.5.5 Risk-free interest rate (r) 3.7.5.6 Case: Utilising the Greeks – a Delta hedge strategy 3.7.6 Option pricing 3.7.6.1 Model 1: The binomial model 3.7.6.2 Model 2: The Black–Scholes model 3.7.7 Price limits of options 3.7.8 Put–call parity relationship 3.7.9 Asian options 3.7.9.1 Model 1: The Kemma and Vorst model 3.7.9.2 Model 2: The Turnbull and Wakeman model 3.7.9.3 Model 3: The Levy arithmetic rate approximation 3.7.9.4 Model 4: The Curran approximation 3.7.10 Other exotic options 3.8 Accounting treatment of derivative transactions 3.9 Summary Appendix: Cumulative standard normal distribution table 4 Freight market information and freight rate indices 4.1 Introduction 4.2 Dry-bulk market information and freight rate indices 4.3 Tanker market information and freight rate indices 4.3.1 Baltic Exchange freight rate indices 4.3.2 Platts freight rates assessments 4.3.3 Liquefied Petroleum Gas (LPG) and Liquefied Natural Gas (LNG) indices 4.4 Containership freight rate indices 4.4.1 China (Export) Containerized Freight Index (CCFI) 4.4.2 Shanghai Containerized Freight Index (SCFI) 4.4.3 World Container Index (WCI) 4.4.4 Ningbo Containerized Freight Index (NCFI) 4.4.5 The Freightos Baltic Index (FBX) 4.5 Summary 5 Freight rate derivatives 5.1 Introduction 5.2 Freight futures markets: early efforts and currently non-active exchanges in freight derivatives – a historical perspective 5.2.1 The Baltic International Freight Futures Exchange (BIFFEX) contract 5.2.1.1 Clearing BIFFEX trades: the LCH.Clearnet (LCH) 5.2.2 The International Maritime Exchange (IMAREX) 5.2.2.1 Clearing IMAREX trades: the Norwegian Futures and Options Clearing House (NOS) 5.2.3 The Nasdaq Energy Futures Exchange (NFX) 5.3 Active exchanges trading freight futures and associated clearing-houses 5.3.1 The European Energy Exchange (EEX) and the European Commodity Clearing (ECC) House 5.3.1.1 Clearing EEX trades: the European Commodity Clearing (ECC) House 5.3.1.1.1 A Clearing example at the European Commodity Clearing (ECC) house 5.3.2 The Chicago Mercantile Exchange (CME) Group 5.3.3 The Intercontinental Exchange (ICE) 5.3.4 The Singapore Exchange Limited (SGX) and the Singapore Exchange Derivatives Clearing SGX-DC 5.4 Over-The-Counter (OTC) freight derivatives 5.4.1 Trading volumes of freight derivatives 5.4.2 Trading volumes of freight derivatives: OTC versus cleared 5.4.3 Credit risk in freight derivative contracts 5.4.4 Clearing OTC freight derivatives 5.4.5 Key properties of FFA contracts 5.4.5.1 Tailor made versus liquidity 5.4.5.2 Basis and off-hire risks 5.5 Market information on FFAs and freight options contracts 5.5.1 Negotiating and writing FFA contracts 5.5.2 The Forward Freight Agreement Brokers Association (FFABA) 5.5.3 The Baltic Forward Assessments (BFAs) 5.5.4 The Baltic Options Assessments (BOAs) 5.5.5 Freight futures prices from market-makers and shipbrokers 5.5.6 Freight options prices from organised stock exchanges (market-makers) 5.5.7 Trading screens for freight derivatives and other developments 5.6 Historical evolution of shipping derivatives 5.7 Summary Appendix I: Clarksons dry-bulk FFA daily report (29 May 2019) Appendix II: Clarksons dry-bulk freight options daily report (23 June 2017) Appendix III: Forward Freight Agreement Brokers Association (FFABA) Forward Freight Agreement Appendix IV: Forward Freight Agreement Brokers Association (FFABA) Freight Options Contract 6 Applications of FFAs, pricing and risk management of FFA positions 6.1 Introduction 6.2 Practical applications of freight futures and FFAs 6.2.1 Dry-bulk voyage FFA, non-cleared 6.2.2 Dry-bulk voyage “hybrid” FFA, cleared 6.2.3 Dry-bulk voyage non-cleared versus cleared FFA 6.2.4 Dry-bulk T/C non-cleared versus cleared FFA 6.2.5 Dry-bulk 12-month T/C non-cleared versus cleared FFA 6.2.6 Dry-bulk voyage trend FFA, cleared 6.2.7 The hedger’s point of view 6.2.8 The speculator’s/investor’s point of view 6.2.9 Tanker voyage FFA, non-cleared 6.2.10 Tanker voyage freight futures, cleared 6.2.11 Tanker T/C “hybrid” FFA (cleared) 6.2.12 FFAs in newbuilding ship finance 6.2.13 Securing favorable shipping loan terms through FFAs 6.2.14 Application of the optimal hedge ratio in the FFA market 6.2.15 Spread trades 6.3 Freight derivatives strategies for banks 6.4 Freight derivatives versus other risk management strategies 6.5 The role of brokers in freight derivatives 6.6 Economics and empirical evidence on FFAs and freight futures 6.6.1 Pricing, price discovery and unbiasedness 6.6.2 Hedging effectiveness 6.6.3 Forecasting performance 6.6.4 Impact on market volatility 6.6.5 Microstructure effects 6.6.6 Forward rate dynamics 6.6.7 Market risk measurement 6.6.8 Surveys on the use of shipping derivatives 6.7 Summary 7 Applications of freight options 7.1 Introduction 7.2 The characteristics of freight options 7.3 Option strategies for freight hedging purposes 7.3.1 Dry-bulk freight option hedge 7.3.1.1 Case 1: The shipowner’s hedge – buying a protective put (floorlet) 7.3.1.2 Case 2: The charterer’s hedge – buying a protective call (caplet) 7.3.1.3 Case 3: The shipowner’s hedge – writing a covered call 7.3.1.4 Case 4: The charterer’s hedge – writing a covered put 7.3.2 Options versus futures/forwards 7.3.2.1 Case 1: Options versus FFAs in a voyage hedge 7.3.2.2 Case 2: Options versus FFAs in a time-charter hedge 7.3.3 Tanker freight option hedges 7.3.4 Calendar option hedges 7.3.4.1 Case 1: Charterer’s calendar hedge 7.3.4.2 Case 2: Shipowner’s calendar hedge 7.4 Freight option strategies for finance purposes 7.4.1 Example 1: Price volatility (business cycle) trading 7.4.2 Example 2: Forward curve shape trading 7.5 Freight option strategies for investment purposes 7.5.1 Option spread strategies 7.5.1.1 Case 1: Bull call spreads (or supercaps) 7.5.1.2 Case 2: Bear call spreads (or superfloors) 7.5.1.3 Case 3: Butterfly spreads 7.5.1.4 Case 4: Calendar spreads 7.5.2 Option combination strategies 7.5.2.1 Case 1: Bottom (or long) straddles (or straddle purchases) 7.5.2.2 Case 2: Top (or short) straddles (or straddle writes) 7.5.2.3 Case 3: Bottom (or long) strips 7.5.2.4 Case 4: Top (or short) strips 7.5.2.5 Case 5: Bottom (or long) straps 7.5.2.6 Case 6: Top (or short) straps 7.5.2.7 Case 7: Bottom (or long) strangles (or bottom vertical combination) 7.5.2.8 Case 8: Top (or short) strangles (or top vertical combination) 7.5.3 Freight option strategies for arbitrage purposes 7.5.3.1 Case 1: Conversions 7.5.3.2 Case 2: Reversals 7.5.3.3 Case 3: Boxes 7.5.3.3.1 Example 1: Short box strategy 7.5.3.3.2 Example 2: Long box strategy 7.6 Summary of freight option strategies 7.7 Economics and empirical evidence on freight options 7.7.1 Option pricing 7.7.2 Freight option dynamics and information transmission across physical and derivative freight markets 7.8 Summary 8 Market risk measurement and management in shipping markets 8.1 Introduction 8.2 What is Value-at-Risk (VaR)? 8.3 Various types of Value-at-Risk models 8.3.1 Non-parametric models 8.3.1.1 Historical simulation (HS) 8.3.1.2 Hybrid historical simulation (HHS) 8.3.2 Parametric models 8.3.2.1 The variance-covariance method 8.3.2.2 Random walk model (Exponentially Weighted Moving Average, EWMA) 8.3.2.3 Integrated GARCH-RiskMetrics VaR 8.3.2.3.1 Example 1: Estimating daily 95% VaR with the RiskMetrics model for BCI route C4 8.3.2.4 Generalised Autoregressive Conditional Heteroskedasticity (GARCH) models 8.3.3 Semi-parametric models 8.3.3.1 Filtered historical simulation (FHS) 8.4 Extreme value theory 8.5 Expected shortfall 8.5.1 An example on the estimation of the ES 8.6 The evaluation of VaR models: backtesting 8.7 Practical examples on estimating market risk in shipping 8.7.1 Estimating multiperiod risk for freight rate exposures when freight rate fixtures do not overlap 8.7.2 Estimating the VaR by scaling volatility with the square root of time 8.7.3 Estimating medium-term VaR 8.7.3.1 Case 1: VaR estimation with volatility scaling 8.7.3.2 Case 2: VaR estimation by applying the scaling law 8.7.3.3 Case 3: Estimating the portfolio’s risk for freight rate exposures 8.8 Summary 9 Bunker price derivatives 9.1 Introduction 9.2 The bunker market 9.3 Key economic variables affecting the bunker market 9.4 Forward bunker agreements 9.5 The bunker fuel oil futures market 9.5.1 Early efforts on bunker fuel oil futures 9.5.2 Cross-hedging bunker price risk 9.5.3 The market of bunker futures contracts 9.6 Bunker swaps 9.7 Bunker options 9.7.1 Bunker collars 9.7.1.1 Case 1: Zero-cost collars 9.7.1.2 Case 2: Participating collars 9.7.2 Swaptions 9.8 Summary 10 Vessel value derivatives 10.1 Introduction 10.2 The Forward Ship Value Agreements (FoSVAs) and Sale & Purchase Forward Agreements (SPFAs) 10.3 Practical applications of SPFAs 10.3.1 Hedging vessel price risk using an SPFA contract 10.3.2 Vessel hedging with a multiple maturity SPFA 10.4 Pricing SPFA contracts 10.5 Baltic Ship Recycling Assessments (BSRAs) 10.5.1 Overview of the vessel scrapping industry 10.6 Summary 11 Foreign exchange derivatives 11.1 Introduction 11.2 Money market hedging 11.3 Currency forwards and futures 11.3.1 Hedging an expected cash outflow 11.3.2 Hedging an expected cash inflow 11.3.3 Speculating currency trade 11.4 Currency swaps 11.4.1 Swapping liabilities 11.4.2 Swapping transaction exposures 11.5 Currency options 11.6 Comparison of derivative transactions in the currency market 11.6.1 Case 1: Alternative trading strategies 11.6.1.1 Alternative 1: Money market trade 11.6.1.2 Alternative 2: Currency forward trade 11.6.1.3 Alternative 3: Currency options trade 1 11.6.1.4 Alternative 4: Currency options trade 2 11.6.2 Case 2: Alternative hedging strategies 11.6.2.1 Alternative 1: Remain unhedged 11.6.2.2 Alternative 2: Currency forward hedge 11.6.2.3 Alternative 3: Money market hedge 11.6.2.4 Alternative 4: Currency futures hedge 11.6.2.5 Alternative 5: Currency options hedge 11.7 Summary 12 Interest rate derivatives 12.1 Introduction 12.2 The underlying assets 12.2.1 Treasury bonds and notes 12.2.2 Treasury bills 12.2.3 Eurodollar 12.2.4 London Interbank Offer Rate 12.3 Forward Rate Agreements (FRAs) 12.4 Interest rate futures 12.4.1 Hedging positions 12.4.2 Pricing of contracts 12.4.3 Hedging and trading applications 12.4.3.1 Case 1: Trading with Eurodollar futures 12.4.3.2 Case 2: Hedging with Eurodollar futures 12.4.3.3 Case 3: Hedging with T-Bond futures 12.4.3.4 Case 4: Hedging with T-Bill futures 12.4.3.5 Case 5: Interest rate futures spreads 12.5 Interest rate swaps 12.5.1 The comparative advantage in an interest rate swap 12.5.2 Shipowner’s schedule of payments in an interest rate swap 12.5.3 Exotic interest rate swaps 12.6 Interest rate options 12.6.1 Interest rate caps 12.6.2 Interest rate floors 12.6.3 Interest rate collars 12.7 Summary 13 Credit risk and credit derivatives 13.1 Introduction 13.2 Sources of credit risk in the shipping business 13.3 Types and measures of credit risk 13.3.1 Types of credit risk 13.3.2 Measures of credit risk 13.3.2.1 Credit ratings and credit rating agencies (CRAs) 13.3.2.1.1 Credit ratings in the shipping industry 13.3.2.1.2 Credit ratings transitions 13.3.2.1.3 Estimating ratings transitions matrices 13.3.2.2 Credit spreads of shipping bonds 13.3.2.3 Estimating probabilities of defaults (PDs) from bond prices 13.4 Credit scoring models 13.4.1 Financial accounting measures of credit risk 13.4.2 Default risk drivers of shipping bank loans 13.4.3 The Basel framework 13.5 Structural models of credit risk 13.5.1 Estimating probabilities of defaults (PDs) using the Merton model 13.6 Credit risk in derivative transactions 13.6.1 Credit risk in OTC FFA contracts 13.7 Credit risk in bunker fuel oil transactions 13.8 Credit risk management 13.8.1 The use of collateral for credit risk management 13.8.2 Credit enhancements 13.8.3 Diversification as a tool for credit risk management 13.8.4 Downgrade triggers and credit risk management 13.8.5 Netting of contracts 13.8.6 Credit Value-at-Risk (VaR) 13.8.7 Credit derivatives 13.8.7.1 Credit Default Swap (CDS) 13.8.7.2 Total Return Swap (TRS) 13.8.7.3 Credit Spread Option (CSO) 13.9 Summary 14 Statistical tools for risk management in shipping 14.1 Introduction 14.2 Data sources and methods 14.3 Descriptive statistics and the moments of random variables 14.3.1 Measures of central tendency (location) – first moments 14.3.1.1 Arithmetic mean 14.3.1.2 Median 14.3.1.3 Mode 14.3.1.4 Geometric mean 14.3.1.5 The choice of measure for the first moment (location) 14.3.2 Measures of dispersion – second moments of the data 14.3.2.1 Range 14.3.2.2 Interquartile range 14.3.2.3 Variance and standard deviation 14.3.2.4 Period returns 14.3.3 Measures of relative dispersion – the Coefficient of Variation (CV) 14.3.4 Measures of skewness – the third moment of the data 14.3.5 Measures of kurtosis – the fourth moment of the data 14.3.6 Measuring the relationship between two variables – covariance and correlation 14.3.7 Examples of calculating descriptive statistics in freight rate data 14.3.7.1 Data recorded at different frequencies 14.3.8 Measuring causal relationships between variables – simple and multiple regression analysis 14.3.8.1 Deriving the OLS (Ordinary Least Squares) estimators 14.3.8.2 Properties of the fitted OLS line 14.3.8.3 The problem of statistical inference 14.3.8.4 Goodness of fit: R2 – The coefficient of determination 14.3.8.5 Extension of results to multivariate regression 14.3.9 Time-series models, Autoregressive Integrated Moving Average (ARIMA) 14.3.9.1 Moving Average (MA) processes 14.3.9.2 Autoregressive processes 14.3.9.3 ARMA processes and the Box–Jenkins approach 14.4 Time-varying volatility models 14.4.1 Moving averages estimates of variance 14.4.2 Exponentially Weighted Moving Average (EWMA) 14.4.3 Realised volatility models 14.4.4 The class of ARCH and GARCH models 14.4.4.1 Introduction to ARCH and GARCH models 14.4.4.2 Asymmetric GARCH models 14.4.4.3 GJR Threshold GARCH model 14.4.4.4 Exponential GARCH model 14.4.4.5 GARCH in mean 14.4.4.6 Markov regime switching GARCH models 14.4.4.7 Multivariate GARCH models 14.4.4.8 Stochastic volatility models 14.4.4.9 Implied volatility 14.5 Forecasting volatility 14.5.1 Historical volatility forecast 14.5.2 Exponential Weighted Moving Average (EWMA) volatility forecast 14.5.3 GARCH models forecast 14.6 Summary Bibliography Index