دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Volume 3] نویسندگان: Ahmed G. Radwan, Farooq Ahmad Khanday, Lobna A. Said سری: ISBN (شابک) : 9780323900904 ناشر: Elsevier, Academic Press سال نشر: 2022 تعداد صفحات: [549] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 29 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Fractional-order Design: Devices, Circuits, And Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی مرتبه کسری: دستگاهها، مدارها و سیستمها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
\"طراحی مرتبه کسری: دستگاهها، مدارها و سیستمها با هدف افزایش درک و علاقه دانشجویان و محققان به مدلسازی، شبیهسازی، طراحی و ساخت دستگاهها و سیستمهای جدید مرتبه کسری و کاربردهای آنها. سیستمهای مرتبه کسری بازی میکنند. نقش اساسی در فعالیتهای روزمره ما دارد.بنابراین، چندین محقق در سراسر جهان تلاش میکنند تا در حوزههای مختلف سیستمهای مرتبه کسری کار کنند. تلاشها شامل توسعه ریاضیات برای حل حساب/سیستمهای مرتبه کسری و دستیابی به امکانپذیر است. طراحی برای کاربردهای مختلف سیستمهای مرتبه کسری این کاربردها از مهندسی پزشکی گرفته تا سیستمهای کنترل، رباتیک، مدلسازی امپدانس زیستی، سیستمهای آشوبزده، پردازش سیگنال و غیره متفاوت است. این کتاب شامل کاربردهای حساب کسری در مدارهای فیلتر و نوسانگر، سیستمهای هرج و مرج میشود. ، کنترل موتور، محاسبات کوانتومی، و شناسایی پارامترها همچنین به عنوان کتابچه راهنمای فرآیند ساخت خازن های مرتبه کسری با استفاده از مواد مختلف و تحقق های مبتنی بر مدار عمل می کند. بنابراین، کتاب سیستمهای مرتبه کسری را از نقطه نظر طراحی معرفی میکند و صنعت را برای کشف این طرحها جذاب میکند.
\"Fractional-Order Design: Devices, Circuits, and Systems aims to boost the understanding and interest of students and researchers in modeling, simulation, design, and fabrication of novel fractional-order devices and systems and their applications. Fractional-order systems play an essential role in our day-to-day activities. Therefore, several researchers around the globe endeavor to work in the different domains of fractional-order systems. The efforts include developing the mathematics to solve fractional-order calculus/systems and to achieve feasible designs for various applications of fractional-order systems. These applications vary from biomedical engineering to control systems, robotics, bio-impedance modeling, chaotic systems, signal processing, and more. The book includes fractional calculus applications in filter and oscillator circuits, chaotic systems, motor control, quantum computing, and parameter identification. It also serves as a handbook for the fabrication process of fractional-order capacitors using different materials and circuit-based realizations. Thus, the book introduces fractional-order systems from the design point of view, appealing for the industry to explore these designs\"--Back cover.
Front Cover Fractional-Order Design: Devices, Circuits, and Systems Copyright Contents List of contributors 1 MOS realizations of fractional-order elements 1.1 Introduction 1.2 CPE/FI emulation techniques 1.2.1 CPE/FI emulation using electronically controlled RC networks 1.2.2 CPE/FI emulation using fractional-order integrators/differentiators 1.3 Practical aspects 1.3.1 Time constants and scaling factors spread reduction 1.3.2 Reduction of the control terminals of the system 1.3.3 Enhancement of the order range of the emulator 1.4 Conclusions and discussion Acknowledgment References 2 A chaotic system with equilibria located on a line and its fractional-order form 2.1 Introduction 2.2 Model of the proposed flow and its dynamics 2.3 Fractional-order form 2.4 Circuit implementation 2.5 FPGA implementation of the chaotic system 2.6 Conclusion References 3 Approximation of fractional-order elements for sinusoidal oscillators 3.1 Introduction 3.2 R-C network-based FDs 3.3 FDs for sinusoidal oscillators 3.3.1 Impedance equalization-based FDs 3.3.2 Admittance equalization-based FDs 3.4 Performance analysis 3.4.1 Stability analysis 3.4.2 Sensitivity analysis using Monte Carlo simulation 3.4.3 PSpice simulation and FoM calculation 3.5 Conclusion and scope of future research References 4 Synchronization between fractional chaotic maps with different dimensions 4.1 Introduction 4.2 Preliminaries 4.3 Combined synchronization of 2D fractional maps 4.3.1 Master system and slave systems 4.3.2 Combined scheme 4.4 Combined synchronization of 3D fractional maps 4.4.1 Master system and slave systems 4.4.2 Combined scheme 4.5 Concluding remarks and future works Acknowledgments References 5 Stabilization of different dimensional fractional chaotic maps 5.1 Introduction 5.2 Basic tools 5.2.1 Caputo delta difference operator and stability 5.2.2 Caputo h-difference operator and stability 5.3 Stabilization of 2D fractional maps 5.4 Stabilization of 3D fractional maps 5.5 Summary and future works Acknowledgments References 6 Observability of speed DC motor with self-tuning fuzzy-fractional-order controller 6.1 Introduction 6.2 Mathematical model of DC motor 6.3 Stability of speed estimation 6.4 Proposed speed controller 6.4.1 Literature review 6.4.1.1 Riemann–Liouville fractional difference 6.4.1.2 Caputo fractional difference 6.4.1.3 Grunwald–Letnikov fractional difference 6.4.2 Fractional PID controller 6.4.3 Fractional-order PI controller 6.4.4 Self-tuning PI fractional-order controller with fuzzy logic 6.5 Results and discussion 6.5.1 Test 1 6.5.2 Test 2 6.5.3 Test 3 6.5.4 Test 4 6.6 Conclusions References 7 Chaos control and fractional inverse matrix projective difference synchronization on parallel chaotic systems with application 7.1 Introduction 7.2 Preliminaries 7.2.1 Definition 7.2.2 Stability criterion 7.3 The fractional inverse matrix projective difference synchronization 7.3.1 Problem formulation 7.3.2 System description 7.3.3 Simulations and discussions 7.3.4 Comparison with published literature 7.3.5 Chaos control about the stagnation points in the presence of uncertainties and disturbances 7.4 Illustration in secure communication 7.5 Conclusions References 8 Aggregation of chaotic signal with proportional fractional derivative execution in communication and circuit simulation 8.1 Introduction 8.2 Fractional-order chaotic systems and their properties 8.2.1 Lyapunov spectrum and Kaplan–Yorke dimension 8.2.2 Dissipativity 8.3 Analog circuit imitation 8.4 Security analysis 8.5 Conclusion References 9 CNT-based fractors in all four quadrants: design, simulation, and practical applications 9.1 Introduction 9.2 Fractor: definitions and state-of-the-art 9.2.1 FOE realization: a brief survey 9.3 A wide-CPZ, long-life, packaged CNT fractor 9.3.1 Description of the CNT fractor 9.3.2 Process of fabrication 9.3.3 Electrical characterization 9.3.4 Variation of FO parameters with time 9.3.5 Origin of the wide CP nature in CNT fractors 9.4 Fractors with desired specifications 9.4.1 An RC ladder network with Foster-I topology 9.4.2 Simulation of FO immittances with RC ladder 9.4.3 Change in FO parameters in CNT fractor 9.4.4 Comparison between two different fractor design techniques 9.5 Four-quadrant FO immittances using CNT fractors 9.5.1 Design of Type I fractors 9.5.2 Design of Type II fractors 9.5.3 Design of Type III fractors 9.5.4 Tunability of fractors 9.6 Application of four-quadrant CNT fractors 9.6.1 Design of a high-Q factor FO resonator 9.6.2 Hardware realization and practical tuning 9.7 Conclusion 9.A MATLAB program to determine RC ladder parameters for five FO specifications Acknowledgments References 10 Fractional-order systems in biological applications: estimating causal relations in a system with inner connectivity using fractional moments 10.1 Introduction 10.2 Related work 10.3 Fractional moments and fractional cumulants 10.4 Hindmarsh–Rose model 10.5 Estimating causal relations 10.5.1 Complex cumulants 10.5.2 Granger causality 10.6 Causal direction pattern recognition 10.6.1 Clustering 10.6.2 Convolutional neural network 10.7 Discussion 10.8 Conclusion References 11 Unitary fractional-order derivative operators for quantum computation 11.1 Introduction 11.2 A brief survey on geometric phase concepts in quantum computation 11.3 Methodology 11.3.1 Fractional calculus preliminaries 11.3.2 Unitary fractional-order derivatives and phasor descriptions 11.3.3 Control of multiqubit quantum interference circuits by unitary fractional-order derivatives 11.4 Some quantum computation implications for unitary fractional-order derivative operators 11.4.1 Modeling of quantum interference computation modes 11.4.2 Design of a measurement probability distribution via a genetic algorithm 11.5 Discussion and conclusions 11.A References 12 Analysis and realization of fractional step filters of order (1+α) 12.1 Introduction 12.2 Analysis of fractional step filters 12.2.1 First method 12.2.1.1 Fractional step low-pass filter 12.2.1.2 Fractional step high-pass filter 12.2.1.3 Fractional step band-pass filter 12.2.1.4 Fractional step all-pass filter 12.2.1.5 Fractional step band-stop filter 12.2.2 Second method 12.2.2.1 Fractional step low-pass filter 12.2.2.2 Fractional step high-pass filter 12.2.2.3 Fractional step band-pass filter 12.2.2.4 Fractional step all-pass filter 12.2.2.5 Fractional step band-stop filter 12.3 Numerical analysis and simulations of FSFs of order (1+α) 12.3.1 Circuit simulations based on Method I 12.3.2 Circuit simulations based on Method II 12.4 Stability 12.5 Sensitivity analysis 12.5.1 Sensitivity analysis of Method I 12.5.2 Sensitivity analysis of Method II 12.5.3 Monte Carlo simulations 12.6 Conclusion References 13 Fractional-order identification and synthesis of equivalent circuit for electrochemical system based on pulse voltammetry 13.1 Introduction 13.2 Experimental setup 13.3 Fractional-order models 13.3.1 Fractional-order transfer function 13.3.2 Fractional-order circuit elements 13.4 Identification of fractional-order transfer function 13.4.1 Structure of the proposed fractional-order transfer function 13.4.2 Parameter estimation 13.4.3 Results: performance evaluation of the identified FOTF 13.5 Proposed circuit with fractional-order elements 13.5.1 Network synthesis for fractional-order circuit 13.5.2 Analysis with fractional circuit parameters 13.6 Principal component analysis: towards electronic tongue application 13.7 Conclusions References 14 Higher-order fractional elements: realizations and applications 14.1 Introduction 14.2 Realization of FOEs with fractional order < 1 14.2.1 CFE approximation-based FOC emulation 14.2.2 FI emulation 14.2.3 Functional block diagram-based emulation 14.3 Realization of fractional-order element with 1 < fractional order< n 14.3.1 IIMC-based realization 14.3.2 GIC-based realization 14.3.3 FBD-based realization 14.4 Application 14.4.1 Stability analysis 14.4.2 Simulation and experimental results 14.4.2.1 Functional verification of FI and FOC 14.4.2.2 Functional verification of FOF 14.5 Conclusion References 15 Fabrication of polymer nanocomposite-based fractional-order capacitor: a guide 15.1 Introduction 15.1.1 History 15.1.2 Present trends in polymer NCs 15.1.2.1 Porous polymer-based 15.1.2.2 Ferroelectric polymer-based 15.1.2.3 Epoxy resin-based 15.2 Polymers 15.2.1 Polymer NCs 15.2.2 Polymer NC as FOC dielectric 15.3 Ferroelectric polymers 15.3.1 PVDF 15.3.1.1 Dielectric properties of PVDF 15.3.1.2 Inducing β-phase PVDF 15.3.1.3 Ferroelectric effect 15.3.2 Porous polymers 15.3.2.1 Dielectric properties of PMMA 15.4 Conductive fillers 15.5 Methods of synthesis 15.5.1 Intercalation 15.5.1.1 Chemical intercalation 15.5.1.2 Mechanical intercalation 15.5.1.3 Melt intercalation 15.5.2 Sol-gel method 15.5.3 Direct mixing 15.5.4 Melt compounding 15.5.5 Solution blending 15.5.6 In situ polymerization 15.6 Percolation threshold 15.7 Factors affecting properties of polymer NCs 15.7.1 Alignment of the filler 15.7.2 Dispersion of the filler 15.7.3 Interfacial bonding between filler and the polymer matrix 15.8 A GNS/PVDF FOC 15.8.1 Materials and methods 15.8.2 Results and discussion 15.9 Conclusion Acknowledgments References 16 Design guidelines for fabrication of MWCNT-polymer based solid-state fractional capacitor 16.1 Introduction 16.2 Solid-state fractional capacitors 16.2.1 Structure of the fractional capacitor 16.2.2 Fabrication procedure 16.3 Batch analysis of the solid-state fractional capacitors for defining the guidelines 16.3.1 Characterization 16.3.2 Yield rate 16.3.3 Effect of thickness of the nanocomposite and the middle plate 16.4 Validation of the defined guidelines 16.5 Material characterization 16.5.1 Details of the analysis 16.5.2 Results from material characterization 16.5.2.1 FTIR spectra 16.5.2.2 SEM and TEM images 16.6 Correlating the material characterization with the CPA of a solid-state fractional capacitor 16.7 Conclusion Acknowledgments References Index Back Cover