دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2ed.
نویسندگان: Richard Herrmann
سری:
ISBN (شابک) : 9789814551076, 9814551074
ناشر: World Scientific
سال نشر: 2014
تعداد صفحات: 500
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Fractional calculus : an introduction for physicists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حساب کسری: مقدمه ای برای فیزیکدانان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مقدمهای مختصر بر روشها و استراتژیهای اساسی در حساب کسری ارائه میکند و خواننده را قادر میسازد تا با وضعیت هنر در این زمینه و همچنین مشارکت و مشارکت در توسعه این حوزه تحقیقاتی هیجانانگیز همراه شود. مطالب به کاربرد حساب کسری در مسائل فیزیکی اختصاص داده شده است. مفهوم کسری برای موضوعات مکانیک کلاسیک، نظریه گروه، مکانیک کوانتومی، فیزیک هسته ای، طیف سنجی هادرون و نظریه میدان کوانتومی به کار می رود و خواننده را با بینش های جذاب جدید شگفت زده می کند. این نسخه جدید و توسعه یافته اکنون فصول اضافی در مورد پردازش تصویر، پتانسیل های تا شده در فیزیک خوشه، طیف سنجی مادون قرمز و جنبه های محلی حساب کسری را نیز پوشش می دهد. یک ویژگی جدید تمرین هایی با راه حل های مفصل است که به طور قابل توجهی از درک عمیق تر جنبه های کلی نظریه پشتیبانی می کند. در نتیجه، این کتاب باید به عنوان یک رسانه حمایتی برای معلمان و دوره های اختصاص داده شده به این موضوع نیز مفید باشد.
The book presents a concise introduction to the basic methods and strategies in fractional calculus and enables the reader to catch up with the state of the art in this field as well as to participate and contribute in the development of this exciting research area. The contents are devoted to the application of fractional calculus to physical problems. The fractional concept is applied to subjects in classical mechanics, group theory, quantum mechanics, nuclear physics, hadron spectroscopy and quantum field theory and it will surprise the reader with new intriguing insights. This new, extended edition now also covers additional chapters about image processing, folded potentials in cluster physics, infrared spectroscopy and local aspects of fractional calculus. A new feature is exercises with elaborated solutions, which significantly supports a deeper understanding of general aspects of the theory. As a result, this book should also be useful as a supporting medium for teachers and courses devoted to this subject
Content: 1. Introduction --
2. Functions. 2.1. Gamma function. 2.2. Mittag-Leffler functions. 2.3. Hypergeometric functions. 2.4. Miscellaneous functions --
3. The fractional derivative. 3.1. Basics. 3.2. The fractional Leibniz product rule. 3.3. The fractional derivative in terms of finite differences --
the Grunwald-Letnikov derivative. 3.4. Discussion --
4. Friction forces. 4.1. Classical description. 4.2. Fractional friction --
5. Fractional calculus. 5.1. The Fourier transform. 5.2. The fractional integral. 5.3. Correlation of fractional integration and differentiation. 5.4. Fractional derivative of second order. 5.5. Fractional derivatives of higher orders --
the Marchaud fractional derivative. 5.6. Erdelyi-Kober operators of fractional integration. 5.7. Geometric interpretation of the fractional integral. 5.8. Low level fractionality. 5.9. Discussion --
6. The fractional harmonic oscillator. 6.1. The fractional harmonic oscillator. 6.2. The harmonic oscillator according to Fourier. 6.3. The harmonic oscillator according to Riemann. 6.4. The harmonic oscillator according to Caputo --
7. Wave equations and parity. 7.1. Fractional wave equations. 7.2. Parity and time-reversal. 7.3. Solutions of the free regularized fractional wave equation --
8. Nonlocality and memory effects. 8.1. A short history of nonlocal concepts. 8.2. From local to nonlocal operators. 8.3. Memory effects --
9. Fractional calculus in multidimensional space --
2D-image processing. 9.1. The generalized fractional derivative. 9.2. Shape recovery --
the local approach. 9.3. Shape recovery --
the nonlocal approach --
10. Fractional calculus in multidimensional space --
3D-folded potentials in cluster physics. 10.1. Folded potentials in fragmentation theory. 10.2. The Riesz potential as smooth transition between Coulomb and folded Yukawa potential. 10.3. Discussion --
11. Quantum mechanics. 11.1. Canonical quantization. 11.2. Quantization of the classical Hamilton function and free solutions. 11.3. Temperature dependence of a fission yield and determination of the corresponding fission potential. 11.4. The fractional Schrodinger equation with an infinite well potential. 11.5. Radial solutions of the fractional Schrodinger equation --
12. The fractional Schrodinger equation with the infinite well potential --
Numerical results using the Riesz derivative. 12.1. The problem --
analytic part. 12.2. The solution --
numerical part --
13. Uniqueness of a fractional derivative --
the Riesz and regularized Liouville derivative as examples. 13.1. Uniqueness on a global scale --
the integral representation of the Riesz derivative. 13.2. Uniqueness on a local scale --
the differential representation of the Riesz derivative. 13.3. Manifest covariant differential representation of the Riesz derivative on RN. 13.4. The integral representation of the regularized Liouville derivative. 13.5. Differential representation of the regularized Liouville derivative. 13.6. Manifest covariant differential representation of the regularized Liouville derivative on RN. 13.7. Generalization of a fractional derivative. 14. Fractional spin --
A property of particles described with the fractional Schrodinger equation. 14.1. Spin --
the classical approach. 14.2. Fractional spin --
15. Factorization. 15.1. The Dirac equation. 15.2. Linearization of the collective Schrodinger equation. 15.3. The fractional Dirac equation. 15.4. The fractional Pauli equation --
16. Symmetries. 16.1. Characteristics of fractional group theory. 16.2. The fractional rotation group SO[symbol] --
17. The fractional symmetric rigid rotor. 17.1. The spectrum of the fractional symmetric rigid rotor. 17.2. Rotational limit. 17.3. Vibrational limit. 17.4. Davidson potential --
the so called [symbol]-unstable limit. 17.5. Linear potential limit. 17.6. The magic limit. 17.7. Comparison with experimental data --
18. q-deformed Lie algebras and fractional calculus. 18.1. q-deformed Lie algebras. 18.2. The fractional q-deformed harmonic oscillator. 18.3. The fractional q-deformed symmetric rotor. 18.4. Half integer representations of the fractional rotation group SO[symbol](3) --
19. Infrared spectroscopy of diatomic molecules. 19.1. The fractional quantum harmonic oscillator. 19.2. Numerical solution of the fractional quantum harmonic oscillator. 19.3. The infrared-spectrumof HCl --
20. Fractional spectroscopy of hadrons. 20.1. Phenomenology of the baryon spectrum. 20.2. Charmonium. 20.3. Phenomenology ofmeson spectra. 20.4. Metaphysics: about the internal structure of quarks --
21. Magic numbers in atomic nuclei. 21.1. The four decompositions of the mixed fractional SO[symbol](9). 21.2. Notation. 21.3. The 9-dimensional fractional Caputo-Riemann-Riemann symmetric rotor. 21.4. Magic numbers of nuclei. 21.5. Ground state properties of nuclei. 21.6. Fine structure of the single particle spectrum --
the extended Caputo-Riemann-Riemann symmetric rotor. 21.7. Triaxiality. 21.8. Discussion --
22. Magic numbers in metal clusters. 22.1. The Caputo-Caputo-Riemann symmetric rotor --
an analytic model for metallic clusters. 22.2. Binding energy of electronic clusters. 22.3. Metaphysics: magic numbers for clusters bound by weak and gravitational forces respectively --
23. Fractors --
Fractional tensor calculus. 23.1. Covariance for fractional tensors. 23.2. Singular fractional tensors --
24. Fractional fields. 24.1. Fractional Euler-Lagrange equations. 24.2. The fractional Maxwell equations. 24.3. Discussion --
25. Gauge invariance in fractional field theories. 25.1. Gauge invariance in first order of the coupling constant [symbol]. 25.2. The fractional Riemann-Liouville-Zeeman effect --
26. On the origin of space. 26.1. The interplay between matter and space. 26.2. Fractional calculus with time dependent [symbol] in the adiabatic limit. 26.3. The model and possible consequences for an application in cosmology. 26.4. On the detectability of dynamic space evolution. 26.5. Meta physics: on the connection between dark matter and dark energy --
27. Outlook.
Abstract:The book presents a concise introduction to the basic methods and strategies in fractional calculus and enables the reader to catch up with the state of the art in this field as well as toRead more...
نظرات کاربران
کتاب های تصادفی