دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: Kenneth Falconer
سری:
ISBN (شابک) : 9781119942399
ناشر: Wiley
سال نشر: 2014
تعداد صفحات: 392
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Fractal Geometry. Mathematical Foundations and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هندسه فراکتال مبانی و کاربردهای ریاضی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Contents Preface to the first edition Preface to the second edition Preface to the third edition Course suggestions Introduction Part I Foundations Chapter 1 Mathematical background 1.1 Basic set theory 1.2 Functions and limits 1.3 Measures and mass distributions 1.4 Notes on probability theory 1.5 Notes and references Exercises Chapter 2 Box-counting dimension 2.1 Box-counting dimensions 2.2 Properties and problems of box-counting dimension 2.3 Modified box-counting dimensions 2.4 Some other definitions of dimension 2.5 Notes and references Exercises Chapter 3 Hausdorff and packing measures and dimensions 3.1 Hausdorff measure 3.2 Hausdorff dimension 3.3 Calculation of Hausdorff dimension-simple examples 3.4 Equivalent definitions of Hausdorff dimension 3.5 Packing measure and dimensions 3.6 Finer definitions of dimension 3.7 Dimension prints 3.8 Porosity 3.9 Notes and references Exercises Chapter 4 Techniques for calculating dimensions 4.1 Basic methods 4.2 Subsets of finite measure 4.3 Potential theoretic methods 4.4 Fourier transform methods 4.5 Notes and references Exercises Chapter 5 Local structure of fractals 5.1 Densities 5.2 Structure of 1-sets 5.3 Tangents to s-sets 5.4 Notes and references Exercises Chapter 6 Projections of fractals 6.1 Projections of arbitrary sets 6.2 Projections of s-sets of integral dimension 6.3 Projections of arbitrary sets of integral dimension 6.4 Notes and references Exercises Chapter 7 Products of fractals 7.1 Product formulae 7.2 Notes and references Exercises Chapter 8 Intersections of fractals 8.1 Intersection formulae for fractals 8.2 Sets with large intersection 8.3 Notes and references Exercises Part II Applications and Examples Chapter 9 Iterated function systems-self-similar and self-affine sets 9.1 Iterated function systems 9.2 Dimensions of self-similar sets 9.3 Some variations 9.4 Self-affine sets 9.5 Applications to encoding images 9.6 Zeta functions and complex dimensions 9.7 Notes and references Exercises Chapter 10 Examples from number theory 10.1 Distribution of digits of numbers 10.2 Continued fractions 10.3 Diophantine approximation 10.4 Notes and references Exercises Chapter 11 Graphs of functions 11.1 Dimensions of graphs 11.2 Autocorrelation of fractal functions 11.3 Notes and references Exercises Chapter 12 Examples from pure mathematics 12.1 Duality and the Kakeya problem 12.2 Vitushkin\'s conjecture 12.3 Convex functions 12.4 Fractal groups and rings 12.5 Notes and references Exercises Chapter 13 Dynamical systems 13.1 Repellers and iterated function systems 13.2 The logistic map 13.3 Stretching and folding transformations 13.4 The solenoid 13.5 Continuous dynamical systems 13.6 Small divisor theory 13.7 Lyapunov exponents and entropies 13.8 Notes and references Exercises Chapter 14 Iteration of complex functions-Julia sets and the Mandelbrot set 14.1 General theory of Julia sets 14.2 Quadratic functions-the Mandelbrot set 14.3 Julia sets of quadratic functions 14.4 Characterisation of quasi-circles by dimension 14.5 Newton\'s method for solving polynomial equations 14.6 Notes and references Exercises Chapter 15 Random fractals 15.1 A random Cantor set 15.2 Fractal percolation 15.3 Notes and references Exercises Chapter 16 Brownian motion and Brownian surfaces 16.1 Brownian motion in R 16.2 Brownian motion in Rn 16.3 Fractional Brownian motion 16.4 Fractional Brownian surfaces 16.5 Lévy stable processes 16.6 Notes and references Exercises Chapter 17 Multifractal measures 17.1 Coarse multifractal analysis 17.2 Fine multifractal analysis 17.3 Self-similar multifractals 17.4 Notes and references Exercises Chapter 18 Physical applications 18.1 Fractal fingering 18.2 Singularities of electrostatic and gravitational potentials 18.3 Fluid dynamics and turbulence 18.4 Fractal antennas 18.5 Fractals in finance 18.6 Notes and references Exercises References Index