دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2ed.
نویسندگان: Christopher D. Sogge
سری: Cambridge tracts in mathematics 210
ISBN (شابک) : 1107120071, 1108234739
ناشر: Cambridge University Press : Cambridge University Press
سال نشر: 2017
تعداد صفحات: 349
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Fourier Integrals in Classical Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انتگرال های فوریه در تحلیل کلاسیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این تک نگاری پیشرفته به درمان های مدرن مشکلات مرکزی در تحلیل هارمونیک می پردازد. موضوع اصلی کتاب تعامل بین ایده های مورد استفاده برای مطالعه انتشار تکینگی ها برای معادله موج و همتایان آنها در تحلیل کلاسیک است. به طور خاص، نویسنده از تجزیه و تحلیل ریز محلی برای مطالعه مسائل مربوط به توابع حداکثر استفاده می کند و Riesz به معنای استفاده از به اصطلاح عملگر نیمه موج است. برای حفظ خودکفایی درمان، نویسنده با بررسی سریع تحلیل فوریه شروع میکند و همچنین ابزارهای لازم را از تجزیه و تحلیل میکرولوکال توسعه میدهد. این ویرایش دوم شامل دو فصل جدید است. اولی قضیه انتشار تکینگی ها توسط هورماندر را ارائه می کند و از آن برای اثبات قضیه دویسترمات-گویلمین استفاده می کند. دومی مربوط به نتایج جدیدتر مربوط به حدس کاکیا است، از جمله حداکثر تخمین های کاکیا به دست آمده توسط بورگین و ولف.
This advanced monograph is concerned with modern treatments of central problems in harmonic analysis. The main theme of the book is the interplay between ideas used to study the propagation of singularities for the wave equation and their counterparts in classical analysis. In particular, the author uses microlocal analysis to study problems involving maximal functions and Riesz means using the so-called half-wave operator. To keep the treatment self-contained, the author begins with a rapid review of Fourier analysis and also develops the necessary tools from microlocal analysis. This second edition includes two new chapters. The first presents Hörmander's propagation of singularities theorem and uses this to prove the Duistermaat-Guillemin theorem. The second concerns newer results related to the Kakeya conjecture, including the maximal Kakeya estimates obtained by Bourgain and Wolff
Content: Cover
Series page
Title page
Copyright information
Dedication
Table of contents
Preface to the Second Edition
Preface to the First Edition
0 Background
0.1 Fourier Transform
0.2 Basic Real Variable Theory
0.3 Fractional Integration and Sobolev Embedding Theorems
0.4 Wave Front Sets and the Cotangent Bundle
0.5 Oscillatory Integrals
Notes
1 Stationary Phase
1.1 Stationary Phase Estimates
The One-Dimensional Case
Stationary Phase in Higher Dimensions
1.2 Fourier Transform of Surface-carried Measures
Notes
2 Non-homogeneous Oscillatory Integral Operators 2.1 Non-degenerate Oscillatory Integral Operators2.2 Oscillatory Integral Operators Related to the Restriction Theorem
2.3 Riesz Means in Rn
2.4 Nikodym Maximal Functions and Maximal Riesz Means in R2
Notes
3 Pseudo-differential Operators
3.1 Some Basics
3.2 Equivalence of Phase Functions
3.3 Self-adjoint Elliptic Pseudo-differential Operators on Compact Manifolds
Notes
4 The Half-wave Operator and Functions of Pseudo-differential Operators
4.1 The Half-wave Operator
4.2 The Sharp Weyl Formula
4.3 Smooth Functions of Pseudo-differential Operators
Notes 5 Lp Estimates of Eigenfunctions5.1 The Discrete L2 Restriction Theorem
Application: Unique Continuation for the Laplacian
5.2 Estimates for Riesz Means
5.3 More General Multiplier Theorems
Notes
6 Fourier Integral Operators
6.1 Lagrangian Distributions
6.2 Regularity Properties
Sharpness of Results
6.3 Spherical Maximal Theorems: Take 1
Notes
7 Propagation of Singularities and Refined Estimates
7.1 Wave Front Sets Redux
7.2 Propagation of Singularities
7.3 Improved Sup-norm Estimates of Eigenfunctions
7.4 Improved Spectral Asymptotics
Notes 8 Local Smoothing of Fourier Integral Operators8.1 Local Smoothing in Two Dimensions and Variable Coefficient Nikodym Maximal Theorems
Orthogonality Arguments in Two Dimensions
Variable Coefficient Nikodym Maximal Functions
8.2 Local Smoothing in Higher Dimensions
Orthogonality Arguments in Higher Dimensions
8.3 Spherical Maximal Theorems Revisited
Notes
9 Kakeya-type Maximal Operators
9.1 The Kakeya Maximal Operator and the Kakeya Problem
9.2 Universal Bounds for Kakeya-type Maximal Operators
9.3 Negative Results in Curved Spaces Negative Results for Oscillatory Integrals Arising in Curved Spaces9.4 Wolff's Bounds for Kakeya-type Maximal Operators
Auxiliary Maximal Function Bounds
Wolff's Bounds for Nikodym Maximal Functions in Rn
9.5 The Fourier Restriction Problem and the Kakeya Problem
Notes
Appendix Lagrangian Subspaces of T∗Rn
References
Index of Notation
Index