دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: G J Pert
سری:
ISBN (شابک) : 2020045338, 9781119774273
ناشر: Wiley
سال نشر: 2021
تعداد صفحات: 467
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Foundations of Plasma Physics for Physicists and Mathematicians به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی فیزیک پلاسما برای فیزیکدانان و ریاضیدانان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کتاب درسی جامع در مورد اصول بنیادی پلاسما، شامل مطالبی در مورد موضوعات پیشرفته و رشته های مرتبط مانند اپتیک، دینامیک سیالات، و اخترفیزیک مبانی فیزیک پلاسما برای فیزیکدانان و ریاضیدانان فیزیک پایه زیرین پلاسما را پوشش می دهد و روش شناسی و تکنیک های مورد استفاده در تحقیقات پلاسما و سایر رشته ها مانند اپتیک و مکانیک سیالات را توصیف می کند. این کتاب درسی دقیق که برای کمک به خوانندگان برای توسعه درک فیزیکی و شایستگی ریاضی در این موضوع طراحی شده است، مبانی نظری زیربنایی فیزیک پلاسما و همچنین طیف وسیعی از مسائل خاص را مورد بحث قرار میدهد که بر مسائلی که اصولاً با همجوشی مرتبط هستند، تمرکز دارد. این متن که بازتاب توسعه فیزیک پلاسما است، ابتدا خوانندگان را با رفتارهای جمعی و برخوردی پلاسما، مدل تک ذره، انتشار موج، اثرات جنبشی گازها و پلاسما و دیگر مفاهیم و اصول بنیادی آشنا میکند. فصل های بعدی موضوعاتی از جمله حد هیدرودینامیک پلاسما، مغناطیسی-هیدرودینامیک ایده آل، امواج در پلاسمای MHD، پلاسمای محصور مغناطیسی، و امواج در پلاسمای سرد و گرم مغناطیسی شده را پوشش می دهند. این متن معتبر توسط یک متخصص شناخته شده با بیش از پنج دهه تجربه پژوهشی فعال در این زمینه نوشته شده است: شناسایی و تأکید بر شباهت ها و تفاوت های پلاسما و مایعات انواع مختلف نیروهای بین ذره ای که بر رفتار جمعی پلاسما تأثیر می گذارند را نشان می دهد و بر اهمیت تأثیرات منسجم و جمعی در پلاسما تأکید می کند. در مورد مدلهای پایه پلاسمای دمای پایین و نظریه متغیرهای مختلط و تبدیلهای لاپلاس مبانی فیزیک پلاسما برای فیزیکدانان و ریاضیدانان کتاب درسی ایدهآل برای دانشجویان پیشرفته در مقطع کارشناسی و کارشناسی ارشد در فیزیک پلاسما و یک خلاصه ارزشمند است. برای فیزیکدانانی که در فیزیک پلاسما و مکانیک سیالات کار می کنند.
A comprehensive textbook on the foundational principles of plasmas, including material on advanced topics and related disciplines such as optics, fluid dynamics, and astrophysics Foundations of Plasma Physics for Physicists and Mathematicians covers the basic physics underlying plasmas and describes the methodology and techniques used in both plasma research and other disciplines such as optics and fluid mechanics. Designed to help readers develop physical understanding and mathematical competence in the subject, this rigorous textbook discusses the underlying theoretical foundations of plasma physics as well as a range of specific problems, focused on those principally associated with fusion. Reflective of the development of plasma physics, the text first introduces readers to the collective and collisional behaviors of plasma, the single particle model, wave propagation, the kinetic effects of gases and plasma, and other foundational concepts and principles. Subsequent chapters cover topics including the hydrodynamic limit of plasma, ideal magneto-hydrodynamics, waves in MHD plasmas, magnetically confined plasma, and waves in magnetized hot and cold plasma. Written by an acknowledged expert with more than five decades' active research experience in the field, this authoritative text: Identifies and emphasizes the similarities and differences between plasmas and fluids Describes the different types of interparticle forces that influence the collective behavior of plasma Demonstrates and stresses the importance of coherent and collective effects in plasma Contains an introduction to interactions between laser beams and plasma Includes supplementary sections on the basic models of low temperature plasma and the theory of complex variables and Laplace transforms Foundations of Plasma Physics for Physicists and Mathematicians is the ideal textbook for advanced undergraduate and graduate students in plasma physics, and a valuable compendium for physicists working in plasma physics and fluid mechanics.
Cover Title Page Copyright Contents Preface Chapter 1 Fundamental Plasma Parameters – Collective Behaviour 1.1 Introduction 1.2 Cold Plasma Waves 1.2.1 Wave Breaking 1.3 Debye Shielding 1.3.1 Weakly and Strongly Coupled Plasmas 1.3.2 The Plasma Parameter 1.4 Diffusion and Mobility 1.4.1 Einstein–Smoluchowski Relation 1.4.2 Ambipolar Diffusion 1.5 Wall Sheath 1.5.1 Positively Biased Wall 1.5.2 Free Fall Sheath 1.5.2.1 Pre‐sheath 1.5.3 Mobility Limited Sheath Chapter 2 Fundamental Plasma Parameters – Collisional Behaviour 2.1 Electron Scattering by Ions 2.1.1 Binary Collisions – Rutherford Cross Section 2.1.2 Momentum Transfer Cross Section 2.1.2.1 Dynamical Friction and Diffusion 2.1.3 Many Body Collisions – Impulse Approximation 2.1.4 Relaxation Times 2.2 Collisional Transport Effects 2.2.1 Random Walk Model for Transport Effects 2.2.2 Maxwell\'s Mean Free Path Model of Transport Phenomena 2.2.2.1 Flux Limitation 2.2.3 Drude Model of Electrical Conductivity 2.2.3.1 Alternating Electric Field, No Magnetic Field 2.2.3.2 Steady Electric Field, Finite Magnetic Field 2.2.3.3 Oscillatory Electric Field, Finite Magnetic Field 2.2.4 Diffusivity and Mobility in a Uniform Magnetic Field 2.3 Plasma Permittivity 2.3.1 Poynting\'s Theorem – Energy Balance in an Electro‐magnetic Field 2.4 Plasma as a Fluid – Two Fluid Model 2.4.1 Waves in Plasma 2.4.2 Beam Instabilities 2.4.2.1 Plasma Bunching 2.4.2.2 Two Stream Instability 2.4.3 Kinematics of Growing Waves Appendix 2.A Momentum Transfer Collision Rate Appendix 2.B The Central Limit Theorem Chapter 3 Single Particle Motion – Guiding Centre Model 3.1 Introduction 3.2 Motion in Stationary and Uniform Fields 3.2.1 Static Uniform Magnetic Field – Cyclotron Motion 3.2.2 Uniform Static Electric and Magnetic Fields 3.3 The Guiding Centre Approximation 3.3.1 The Method of Averaging 3.3.2 The Guiding Centre Model for Charged Particles 3.4 Particle Kinetic Energy 3.5 Motion in a Static Inhomogeneous Magnetic Field 3.5.1 Field Gradient Drift 3.5.2 Curvature Drift 3.5.3 Divergent Field Lines 3.5.4 Twisted Field Lines 3.6 Motion in a Time Varying Magnetic Field 3.7 Motion in a Time Varying Electric Field 3.8 Collisional Drift 3.9 Plasma Diamagnetism 3.10 Particle Trapping and Magnetic Mirrors 3.10.1 Fermi Acceleration 3.11 Adiabatic Invariance 3.12 Adiabatic Invariants of Charged Particle Motions Appendix 3.A Northrop’s Expansion Procedure 3.A.1 Drift Velocity and Longitudinal Motion along the Field Lines Chapter 4 Kinetic Theory of Gases 4.1 Introduction 4.2 Phase Space 4.2.1 Γ Phase Space 4.2.1.1 Liouville\'s Equation 4.2.2 μ Space 4.3 Relationship Between Γ Space and μ Space 4.3.1 Integrals of the Liouville Equation 4.4 The BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) Hierarchy 4.5 Bogoliubov\'s Hypothesis for Dilute Gases 4.6 Derivation of the Boltzmann Collision Integral from the BBGKY Hierarchy 4.7 Boltzmann Collision Operator 4.7.1 Summation Invariants 4.8 Boltzmann\'s H Theorem 4.9 The Equilibrium Maxwell–Boltzmann Distribution 4.9.1 Entropy and the H function 4.10 Hydrodynamic Limit – Method of Moments 4.10.1 Conservation of Mass 4.10.2 Conservation of Momentum 4.10.3 Conservation of Energy 4.11 The Departure from Steady Homogeneous Flow: The Chapman–Enskog Approximation Chapter 5 Wave Propagation in Inhomogeneous, Dispersive Media 5.1 Introduction 5.2 Basic Concepts of Wave Propagation – The Geometrical Optics Approximation 5.3 The WKB Approximation 5.3.1 Oblique Incidence 5.4 Singularities in Waves 5.4.1 Cut‐off or Turning Point 5.4.2 Resonance Point 5.4.3 Resonance Layer and Collisional Damping 5.5 The Propagation of Energy 5.5.1 Group Velocity of Waves in Dispersive Media 5.5.2 Waves in Dispersive Isotropic Media 5.6 Group Velocity of Waves in Anisotropic Dispersive Media 5.6.1 Equivalence of Energy Transport Velocity and Group Velocity Appendix 5.A Waves in Anisotropic Inhomogeneous Media Chapter 6 Kinetic Theory of Plasmas – Collisionless Models 6.1 Introduction 6.2 Vlasov Equation 6.3 Particle Trapping by a Potential Well Chapter 7 Kinetic Theory of Plasmas 7.1 Introduction 7.2 The Fokker–Planck Equation – The Stochastic Approach 7.2.1 The Scattering Integral for Coulomb Collisions 7.3 The Fokker–Planck Equation – The Landau Equation 7.3.1 Application to Collisions between Charged Particles 7.4 The Fokker–Planck Equation – The Cluster Expansion 7.4.1 The Balescu–Lenard Equation 7.5 Relaxation of a Distribution to the Equilibrium Form 7.5.1 Isotropic Distribution 7.5.2 Anisotropic Distribution 7.6 Ion–Electron Thermal Equilibration by Coulomb Collisions 7.7 Dynamical Friction Appendix 7.A Reduction of the Boltzmann Equation to Fokker–Planck Form in theWeak Collision Limit Appendix 7.B Finite Difference Algorithm for Integrating the Isotropic Fokker–Planck Equation Appendix 7.C Monte Carlo Algorithm for Integrating the Fokker–Planck Equation Appendix 7.D Landau’s Calculation of the Electron–Ion Equilibration Rate Chapter 8 The Hydrodynamic Limit for Plasma 8.1 Introduction – Individual Particle Fluid Equations 8.2 The Departure from Steady, Homogeneous Flow: The Transport Coefficients 8.3 Magneto‐hydrodynamic Equations 8.3.1 Equation of Mass Conservation 8.3.2 Equation of Momentum Conservation 8.3.3 Virial Theorem 8.3.4 Equation of Current Flow 8.3.5 Equation of Energy Conservation 8.4 Transport Equations 8.4.1 Collision Times 8.4.2 Symmetry of the Transport Equations 8.5 Two Fluid MHD Equations – Braginskii Equations 8.5.1 Magnetic Field Equations 8.5.1.1 Energy Balance 8.6 Transport Coefficients 8.6.1 Collisional Dominated Plasma 8.6.1.1 Force Terms F 8.6.1.2 Energy Flux Terms 8.6.1.3 Viscosity 8.6.2 Field‐Dominated Plasma 8.6.2.1 Force Terms F 8.6.2.2 Energy Flux Terms 8.6.2.3 Viscosity 8.7 Calculation of the Transport Coefficients 8.8 Lorentz Approximation 8.8.1 Electron–Electron Collisions 8.8.2 Electron Runaway 8.9 Deficiencies in the Spitzer/Braginskii Model of Transport Coefficients Appendix 8.A BGK Model for the Calculation of Transport Coefficients 8.A.1 BGK Conductivity Model 8.A.2 BGK Viscosity Model Appendix 8.B The Relationship Between the Flux Equations Given By Shkarofsky and Braginskii Appendix 8.C Electrical Conductivity in aWeakly Ionised Gas and the Druyvesteyn Distribution Chapter 9 Ideal Magnetohydrodynamics 9.1 Infinite Conductivity MHD Flow 9.1.1 Frozen Field Condition 9.1.2 Adiabatic Equation of State 9.1.3 Pressure Balance 9.1.3.1 Virial Theorem 9.2 Incompressible Approximation 9.2.1 Bernoulli\'s Equation – Steady Flow 9.2.2 Kelvin\'s Theorem – Circulation 9.2.3 Alfvén Waves Chapter 10 Waves in MHD Fluids 10.1 Introduction 10.2 Magneto‐sonic Waves 10.3 Discontinuities in Fluid Mechanics 10.3.1 Classical Fluids 10.3.2 Discontinuities in Magneto‐hydrodynamic Fluids 10.4 The Rankine–Hugoniot Relations for MHD Flows 10.5 Discontinuities in MHD Flows 10.6 MHD Shock Waves 10.6.1 Simplifying Frame Transformations 10.7 Properties of MHD Shocks 10.7.1 Shock Hugoniot 10.7.2 Shock Adiabat – General Solution for a Polytropic Gas 10.8 Evolutionary Shocks 10.8.1 Evolutionary MHD Shock Waves 10.8.2 Parallel Shock – Magnetic Field Normal to the Shock Plane 10.9 Switch‐on and Switch‐off Shocks 10.10 Perpendicular Shock – Magnetic Field Lying in the Shock Plane 10.11 Shock Structure and Stability Appendix 10.A Group Velocity of Magneto-sonicWaves Appendix 10.B Solution in de Hoffman–Teller Frame 10.B.1 Parallel Shocks Chapter 11 Waves in Cold Magnetised Plasma 11.1 Introduction 11.2 Waves in Cold Plasma 11.2.1 Cut‐off and Resonance 11.2.2 Polarisation 11.3 Cold Plasma Waves 11.3.1 Zero Applied Magnetic Field 11.3.2 Low Frequency Velocity Waves 11.3.3 Propagation of Waves Parallel to the Magnetic Field 11.3.4 Propagation of Waves Perpendicular to the Magnetic Field 11.3.5 Resonance in Plasma Waves Chapter 12 Waves in Magnetised Warm Plasma 12.1 The Dielectric Properties of Unmagnetised Warm Dilute Plasma 12.1.1 Plasma Dispersion Relation 12.1.1.1 Dispersion Relation for Transverse Waves 12.1.1.2 Dispersion Relation for Longitudinal Waves 12.1.2 Dielectric Constant of a Plasma 12.1.2.1 The Landau Contour Integration Around the Singularity 12.2 Transverse Waves 12.3 Longitudinal Waves 12.4 Linear Landau Damping 12.4.1 Resonant Energy Absorption 12.5 Non‐linear Landau Damping 12.5.1 Particle Trapping 12.5.2 Plasma Wave Breaking 12.6 The Plasma Dispersion Function 12.7 Positive Ion Waves 12.7.1 Transverse Waves 12.7.2 Longitudinal Waves 12.7.2.1 Plasma Waves, ζe > 1 12.7.2.2 Ion Waves ζe < 1 12.8 Microscopic Plasma Instability 12.8.1 Nyquist Plot 12.8.1.1 Penrose\'s Criterion 12.9 The Dielectric Properties of Warm Dilute Plasma in a Magnetic Field 12.9.1 Propagation Parallel to the Magnetic Field 12.9.2 Propagation Perpendicular to the Magnetic Field Appendix 12.A Landau’s Solution of the Vlasov Equation Appendix 12.B ElectrostaticWaves Chapter 13 Properties of Electro‐magnetic Waves in Plasma 13.1 Plasma Permittivity and the Dielectric Constant 13.1.1 The Properties of the Permittivity Matrix 13.2 Plane Waves in Homogeneous Plasma 13.2.1 Waves in Collisional Cold Plasma 13.2.1.1 Isotropic Unmagnetised Plasma 13.2.1.2 Anisotropic Magnetised Plasma 13.3 Plane Waves Incident Obliquely on a Refractive Index Gradient 13.3.1 Oblique Incidence at a Cut‐off Point – Resonance Absorption 13.3.1.1 s Polarisation 13.3.1.2 p Polarisation 13.4 Single Particle Model of Electrons in an Electro‐magnetic Field 13.4.1 Quiver Motion 13.4.2 Ponderomotive Force 13.4.3 The Impact Model for Collisional Absorption 13.4.3.1 Electron–Electron Collisions 13.4.4 Distribution Function of Electrons Subject to Inverse Bremsstrahlung Heating 13.5 Parametric Instabilities 13.5.1 Coupled Wave Interactions 13.5.1.1 Manley–Rowe Relations 13.5.1.2 Parametric Instability 13.5.2 Non‐linear Laser‐Plasma Absorption 13.5.2.1 Absorption Instabilities 13.5.2.2 Reflection Instabilities Appendix 13.A Ponderomotive Force Chapter 14 Laser–Plasma Interaction 14.1 Introduction 14.2 The Classical Hydrodynamic Model of Laser‐Solid Breakdown 14.2.1 Basic Parameters of Laser Breakdown 14.2.2 The General Theory of the Interaction of Lasers with Solid Targets 14.2.3 Distributed Heating – Low Intensity, Self‐regulating Flow 14.2.3.1 Early Time Self‐similar Solution 14.2.3.2 Late Time Steady‐State Solution 14.2.4 Local Heating – High Intensity, Deflagration Flow 14.2.4.1 Early Time Thermal Front 14.2.4.2 Late Time Steady‐State Flow 14.2.5 Additional Simple Analytic Models 14.2.5.1 Short Pulse Heating 14.2.5.2 Heating of Small Pellets – Homogeneous Self‐similar Model 14.3 Simulation of Laser‐Solid Target Interaction Appendix 14.A Non-linear Diffusion Appendix 14.B Self-similar Flows with Uniform Velocity Gradient Chapter 15 Magnetically Confined Plasma 15.1 Introduction 15.2 Equilibrium Plasma Configurations 15.3 Linear Devices 15.4 Toroidal Devices 15.4.1 Pressure Balance 15.4.1.1 Pressure Imbalance Mitigation 15.4.2 Guiding Centre Drift 15.5 The General Problem: The Grad–Shafranov Equation 15.6 Boundary Conditions 15.7 Equilibrium Plasma Configurations 15.7.1 Perturbation Methods 15.7.2 Analytical Solutions of the Grad–Shafranov Equation 15.7.3 Numerical Solutions of the Grad–Shafranov Equation 15.8 Classical Magnetic Cross Field Diffusion 15.9 Trapped Particles and Banana Orbits 15.9.1 Collisionless Banana Regime (ν* << 1) 15.9.1.1 Diffusion in the Banana Regime 15.9.1.2 Bootstrap Current (ν* << 1) 15.9.2 Resistive Plasma Diffusion – Collisional Pfirsch–Schlüter Regime 15.9.2.1 Pfirsch–Schlüter Current (ν* >> 1) 15.9.2.2 Diffusion in the Pfirsch–Sclüter Regime 15.9.3 Plateau Regime 15.9.4 Diffusion in Tokamak Plasmas Appendix 15.A Equilibrium Maintaining ‘Vertical’ Field Appendix 15.B Perturbation Solution of the Grad–Shafranov Equation Appendix 15.C Analytic Solutions of the Homogeneous Grad–Shafranov Equation Appendix 15.D Guiding Centre Motion in a Twisted Circular Toroidal Plasma Appendix 15.E The Pfirsch–Schlüter Regime 15.E.1 Diffusion in the Pfirsch–Schlüter Regime Chapter 16 Instability of an Equilibrium Confined Plasma 16.1 Introduction 16.2 Ideal MHD Instability 16.2.1 Linearised Stability Equations 16.2.2 Normal Mode Analysis – The Stability of a Cylindrical Plasma Column 16.2.3 m = 0 Sausage Instability 16.2.4 m = 1 Kink Instability 16.3 Potential Energy 16.4 Interchange Instabilities Supplementary Material M.1 Breakdown and Discharges in d.c. Electric Fields M.1.1 Gas Breakdown and Paschen’s Law M.1.2 Similarity and Proper Variables M.1.3 Townsend’s First Coefficient M.1.4 Townsend’s Breakdown Criterion M.1.5 Paschen Curve and Paschen Minimum M.1.6 Radial Profile of Glow Discharge M.1.7 Collisional Ionisation Rate for Low Temperature Electrons M.1.8 Radio Frequency and Microwave Discharges M.2 Key Facts Governing Nuclear Fusion M.2.1 Fusion Rate M.2.2 Lawson’s Criterion M.2.3 Triple Product M.3 A Short Introduction to Functions of a Complex Variable M.3.1 Cauchy–Riemann Relations M.3.2 Harmonic Functions M.3.3 Area M.3.4 Cauchy Integral Theorem M.3.5 Morera’s Theorem M.3.6 Analytic Continuation M.3.7 Extension or Contraction of a Contour M.3.8 Inclusion of Isolated Singularities M.3.9 Cauchy Formula M.3.9.1 Interior Domain M.3.9.2 Exterior Domain M.3.10 Treatment of Improper Integrals M.3.11 Sokhotski–Plemelj Theorem M.3.12 Improper Integral Along a Real Line M.3.13 Taylor and Laurent Series M.3.14 The Argument Principle M.3.15 Estimation Lemma M.3.16 Jordan’s Lemma M.3.17 Conformal Mapping M.4 Laplace Transform M.4.1 Bromwich Contour Problems Bibliography Index EULA