دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Lakshminarayan Hazra
سری:
ISBN (شابک) : 1498744923, 9781498744928
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 775
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 44 مگابایت
در صورت تبدیل فایل کتاب Foundations of Optical System Analysis and Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی تحلیل و طراحی سیستم نوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
از آنجایی که ادغام رویکرد علمی در مقابله با مشکلات ابزار دقیق نوری، تجزیه و تحلیل و طراحی سیستم های نوری یک حوزه اصلی مهندسی نوری را تشکیل می دهد. تعداد زیادی نرم افزار با سطوح مختلف دامنه و کاربرد در حال حاضر برای تسهیل کار در دسترس است. با این حال، داشتن یک نرم افزار طراحی نوری، فی نفسه، تضمینی برای رسیدن به راه حل های صحیح یا بهینه نیست. اعتبار و/یا بهینه بودن راهحلها تا حد زیادی به فرمولبندی مناسب مسئله بستگی دارد که مستلزم کاربرد صحیح اصول و نظریههای مهندسی نوری است. از سوی دیگر، توسعه تنظیمات تجربی مناسب برای تحقیقات در زمینه رو به رشد اپتیک و فوتونیک مستلزم درک خوب این اصول و نظریه ها است.
با در نظر گرفتن این پس زمینه. این کتاب یک بررسی جامع از موضوعاتی مانند تجزیه و تحلیل پاراکسیال، نظریه انحراف، اپتیک هامیلتونی، نظریه های اشعه نوری و موج نوری تشکیل تصویر، اپتیک فوریه، طراحی ساختاری، بهینه سازی طراحی لنز، بهینه سازی جهانی و غیره ارائه می دهد. نمایش پایه ها
کتاب پیشنهادی برای ارائه مطالب کافی برای "خودآموزی" موضوع طراحی شده است. برای شاغلین در زمینه های مرتبط، این کتاب مرجع مفیدی است.
Foundations of Optical System Analysis and Synthesis ارائه می دهد
< /p>
این کتاب به عنوان یک کتاب مرجع برای دانشجویان تحصیلات تکمیلی، محققان، اساتید، دانشمندان و فناوران در R
Since the incorporation of scientific approach in tackling problems of optical instrumentation, analysis and design of optical systems constitute a core area of optical engineering. A large number of software with varying level of scope and applicability is currently available to facilitate the task. However, possession of an optical design software, per se, is no guarantee for arriving at correct or optimal solutions. The validity and/or optimality of the solutions depend to a large extent on proper formulation of the problem, which calls for correct application of principles and theories of optical engineering. On a different note, development of proper experimental setups for investigations in the burgeoning field of optics and photonics calls for a good understanding of these principles and theories.
With this backdrop in view, this book presents a holistic treatment of topics like paraxial analysis, aberration theory, Hamiltonian optics, ray-optical and wave-optical theories of image formation, Fourier optics, structural design, lens design optimization, global optimization etc. Proper stress is given on exposition of the foundations.
The proposed book is designed to provide adequate material for ‘self-learning’ the subject. For practitioners in related fields, this book is a handy reference.
Foundations of Optical System Analysis and Synthesis provides
This book is composed as a reference book for graduate students, researchers, faculty, scientists and technologists in R & D centres and industry, in pursuance of their understanding of related topics and concepts during problem solving in the broad areas of optical, electro-optical and photonic system analysis and design.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments Author Brief Biography 1 Introduction 1.1 An Early History of Optical Systems and Optics 1.1.1 Early History of Mirrors 1.1.2 Early History of Lenses 1.1.3 Early History of Glass Making 1.1.4 Ancient History of Optics in Europe, India and China 1.1.5 Optics Activities in the Middle East in 10th Century ce 1.1.6 Practical Optical Systems of the Early Days 1.1.7 Reading Stones and Discovery of Eyeglasses 1.1.8 Revival of Investigations On Optics in Europe By Roger Bacon in the 13th Century ce 1.1.9 Optics During Renaissance in Europe 1.1.10 Invention of Telescope and Microscope 1.1.11 Investigations On Optics and Optical Systems By Johannes Kepler 1.1.12 Discovery of the Laws of Refraction 1.1.13 Discovery of the Phenomena of Diffraction, Interference and Double Refraction 1.1.14 Newton’s Contributions in Optics and Rømer’s Discovery of Finite Speed of Light 1.1.15 Contributions By Christian Huygens in Instrumental Optics and in Development of the Wave Theory of Light 1.2 Metamorphosis of Optical Systems in the Late Twentieth Century 1.3 Current Definition of Optics 1.4 Types of Optical Systems 1.5 Classification of Optical Systems 1.6 Performance Assessment of Optical Systems 1.7 Optical Design: System Design and Lens Design 1.8 Theories of Light References 2 From Maxwell’s Equations to Thin Lens Optics 2.1 Maxwell’s Equations 2.2 The Wave Equation 2.3 Characteristics of the Harmonic Plane Wave Solution of the Scalar Wave Equation 2.3.1 Inhomogeneous Waves 2.4 Wave Equation for Propagation of Light in Inhomogeneous Media 2.4.1 Boundary Conditions 2.5 Vector Waves and Polarization 2.5.1 Polarization of Light Waves 2.6 Propagation of Light in Absorbing/Semi-Absorbing Media 2.7 Transition to Scalar Theory 2.8 ‘Ray Optics’ Under Small Wavelength Approximation 2.8.1 The Eikonal Equation 2.8.2 Equation for Light Rays 2.9 Basic Principles of Ray Optics 2.9.1 The Laws of Refraction 2.9.1.1 A Plane Curve in the Neighbourhood of a Point On It 2.9.1.2 A Continuous Surface in the Neighbourhood of a Point On It 2.9.1.3 Snell’s Laws of Refraction 2.9.2 Refraction in a Medium of Negative Refractive Index 2.9.3 The Case of Reflection 2.9.3.1 Total Internal Reflection 2.9.4 Fermat’s Principle 2.9.5 The Path Differential Theorem 2.9.6 Malus-Dupin Theorem 2.10 Division of Energy of a Light Wave Incident On a Surface of Discontinuity 2.10.1 Phase Changes in Reflected and Transmitted Waves 2.10.2 Brewster’s Law 2.11 From General Ray Optics to Parabasal Optics, Paraxial Optics and Thin Lens Optics References 3 Paraxial Optics 3.1 Raison d’Être for Paraxial Analysis 3.2 Imaging By a Single Spherical Interface 3.3 Sign Convention 3.4 Paraxial Approximation 3.4.1 On-Axis Imaging 3.4.1.1 Power and Focal Length of a Single Surface 3.4.2 Extra-Axial Imaging 3.4.3 Paraxial Ray Diagram 3.4.4 Paraxial Imaging By a Smooth Surface of Revolution About the Axis 3.5 Paraxial Imaging By Axially Symmetric System of Surfaces 3.5.1 Notation 3.5.2 Paraxial Ray Tracing 3.5.3 The Paraxial Invariant 3.6 Paraxial Imaging By a Single Mirror 3.7 The General Object-Image Relation for an Axisymmetric System 3.7.1 A Geometrical Construction for Finding the Paraxial Image 3.7.2 Paraxial Imaging and Projective Transformation (Collineation) 3.8 Cardinal Points in Gaussian Optics 3.8.1 Determining Location of Cardinal Points From System Data 3.8.2 Illustrative Cases 3.8.2.1 A Single Refracting Surface 3.8.2.2 A System of Two Separated Components 3.8.2.3 A Thick Lens With Different Refractive Indices for the Object and the Image Spaces 3.8.2.4 A Thin Lens With Different Refractive Indices for the Object and the Image Spaces 3.8.2.5 Two Separated Thin Lenses in Air 3.9 The Object and Image Positions for Systems of Finite Power 3.10 Newton’s Form of the Conjugate Equation 3.11 Afocal Systems 3.12 Vergence and Power 3.13 Geometrical Nature of Image Formation By an Ideal Gaussian System 3.13.1 Imaging of a Two-Dimensional Object On a Transverse Plane 3.13.2 Imaging of Any Line in the Object Space 3.13.3 Suitable Values for Paraxial Angle and Height Variables in an Ideal Gaussian System 3.14 Gaussian Image of a Line Inclined With the Axis 3.15 Gaussian Image of a Tilted Plane: The Scheimpflug Principle 3.15.1 Shape of the Image 3.16 Gaussian Image of a Cube References 4 Paraxial Analysis of the Role of Stops 4.1 Aperture Stop and the Pupils 4.1.1 Conjugate Location and Aperture Stop 4.2 Extra-Axial Imagery and Vignetting 4.2.1 Vignetting Stop 4.3 Field Stop and the Windows 4.3.1 Field of View 4.3.2 Field Stop, Entrance, and Exit Windows 4.3.2.1 Looking at an Image Formed By a Plane Mirror 4.3.2.2 Looking at Image Formed By a Convex Spherical Mirror 4.3.2.3 Imaging By a Single Lens With a Stop On It 4.3.2.4 Imaging By a Single Lens With an Aperture Stop On It and a Remote Diaphragm in the Front 4.3.2.5 Appropriate Positioning of Aperture Stop and Field Stop 4.3.2.6 Aperture Stop and Field Stop in Imaging Lenses With No Dedicated Physical Stop 4.3.2.7 Imaging By a Multicomponent Lens System 4.3.2.8 Paraxial Marginal Ray and Paraxial Pupil Ray 4.4 Glare Stop, Baffles, and the Like 4.5 Pupil Matching in Compound Systems 4.6 Optical Imaging System of the Human Eye 4.6.1 Paraxial Cardinal Points of the Human Eye 4.6.1.1 Correction of Defective Vision By Spectacles 4.6.1.2 Position of Spectacle Lens With Respect to Eye Lens 4.6.2 Pupils and Centre of Rotation of the Human Eye 4.6.2.1 Position of Exit Pupil in Visual Instruments 4.6.3 Visual Magnification of an Eyepiece Or Magnifier 4.7 Optical (Paraxial) Invariant: Paraxial Variables and Real Finite Rays 4.7.1 Different Forms of Paraxial Invariant 4.7.1.1 Paraxial Invariant in Star Space 4.7.1.2 A Generalized Formula for Paraxial Invariant H 4.7.1.3 An Expression for Power K in Terms of H and Angle Variables of the PMR and the PPR 4.7.2 Paraxial Ray Variables and Real Finite Rays 4.7.2.1 Paraxial Ray Variables in an Ideal Gaussian System 4.7.2.2 Paraxial Ray Variables in a Real Optical System 4.7.2.3 Choice of Appropriate Values for Paraxial Angles U and 4.8 Angular Magnification in Afocal Systems 4.9 F-Number and Numerical Aperture 4.10 Depth of Focus and Depth of Field 4.10.1 Expressions for Depth of Focus, Depth of Field, and Hyperfocal Distance for a Single Thin Lens With Stop On It 4.10.2 General Expressions for Depth of Focus, Depth of Field, and Hyperfocal Distance for an Axisymmetric Imaging System 4.11 Telecentric Stops 4.12 Stops in Illumination Systems 4.12.1 Slide Projector 4.12.2 The Köhler Illumination System in Microscopes References 5 Towards Facilitating Paraxial Treatment 5.1 Matrix Treatment of Paraxial Optics 5.1.1 The Refraction Matrix and the Translation/Transfer Matrix 5.1.2 The System Matrix 5.1.3 The Conjugate Matrix 5.1.4 Detailed Form of the Conjugate Matrix in the Case of Finite Conjugate Imaging 5.1.4.1 Location of the Cardinal Points of the System: Equivalent Focal Length and Power 5.2 Gaussian Brackets in Paraxial Optics 5.2.1 Gaussian Brackets: Definition 5.2.2 Few Pertinent Theorems of Gaussian Brackets 5.2.3 Elements of System Matrix in Terms of Gaussian Brackets 5.3 Delano Diagram in Paraxial Design of Optical Systems 5.3.1 A Paraxial Skew Ray and the Diagram 5.3.2 Illustrative Diagrams 5.3.3 Axial Distances 5.3.4 Conjugate Lines 5.3.5 Cardinal Points References 6 The Photometry and Radiometry of Optical Systems 6.1 Radiometry and Photometry: Interrelationship 6.2 Fundamental Radiometric and Photometric Quantities 6.2.1 Radiant Or Luminous Flux (Power) 6.2.2 Radiant Or Luminous Intensity of a Source 6.2.3 Radiant (Luminous) Emittance Or Exitance of a Source 6.2.4 Radiance (Luminance) of a Source 6.2.4.1 Lambertian Source 6.2.5 Irradiance (Illuminance/Illumination) of a Receiving Surface 6.3 Conservation of Radiance/Luminance (Brightness) in Optical Imaging Systems 6.4 Flux Radiated Into a Cone By a Small Circular Lambertian Source 6.5 Flux Collected By Entrance Pupil of a Lens System 6.6 Irradiance of an Image 6.7 Off-Axial Irradiance/Illuminance 6.8 Irradiance/Illuminance From a Large Circular Lambertian Source 6.8.1 Radiance (Luminance) of a Distant Source References 7 Optical Imaging By Real Rays 7.1 Rudiments of Hamiltonian Optics 7.1.1 Hamilton’s Point Characteristic Function 7.1.1.1 Hamilton-Bruns’ Point Eikonal 7.1.2 Point Angle Eikonal 7.1.3 Angle Point Eikonal 7.1.4 Angle Eikonal 7.1.5 Eikonals and Their Uses 7.1.6 Lagrangian Optics 7.2 Perfect Imaging With Real Rays 7.2.1 Stigmatic Imaging of a Point 7.2.2 Cartesian Oval[64] 7.2.2.1 Finite Conjugate Points 7.2.2.2 Cartesian Mirror for Stigmatic Imaging of Finite Conjugate Points 7.2.3 Perfect Imaging of Three-Dimensional Domain 7.2.3.1 Sufficiency Requirements for Ideal Imaging By Maxwellian ‘Perfect’ Instrument 7.2.3.2 Impossibility of Perfect Imaging By Real Rays in Nontrivial Cases 7.2.3.3 Maxwell’s ‘Fish-Eye’ Lens and Luneburg Lens 7.2.4 Perfect Imaging of Surfaces 7.2.4.1 Aplanatic Surfaces and Points 7.2.5 Stigmatic Imaging of Two Neighbouring Points: Optical Cosine Rule 7.2.5.1 Abbe’s Sine Condition 7.2.5.2 Herschel’s Condition 7.2.5.3 Incompatibility of Herschel’s Condition With Abbe’s Sine Condition 7.3 Real Ray Invariants 7.3.1 Skew Ray Invariant 7.3.1.1 A Derivation of the Skew Ray Invariance Relationship 7.3.1.2 Cartesian Form of Skew Ray Invariant 7.3.1.3 Other Forms of Skew Ray Invariant 7.3.1.4 Applications of the Skew Invariant 7.3.2 Generalized Optical Invariant 7.3.2.1 Derivation of Generalized Optical Invariant 7.4 Imaging By Rays in the Vicinity of an Arbitrary Ray 7.4.1 Elements of Surface Normals and Curvature 7.4.1.1 The Equations of the Normals to a Surface 7.4.1.2 The Curvature of a Plane Curve: Newton’s Method 7.4.1.3 The Curvatures of a Surface: Euler’s Theorem 7.4.1.4 The Normals to an Astigmatic Surface 7.4.2 Astigmatism of a Wavefront in General 7.4.2.1 Rays in the Neighbourhood of a Finite Principal Ray in Axisymmetric Systems 7.4.2.2 Derivation of S and T Ray Tracing Formulae 7.4.2.3 The Sagittal Invariant 7.5 Aberrations of Optical Systems References 8 Monochromatic Aberrations 8.1 A Journey to the Wonderland of Optical Aberrations: A Brief Early History 8.2 Monochromatic Aberrations 8.2.1 Measures of Aberration 8.2.1.1 Undercorrected and Overcorrected Systems 8.2.2 Ray Aberration and Wave Aberration: Interrelationship 8.2.3 Choice of Reference Sphere and Wave Aberration 8.2.3.2 Effect of Change in Radius of the Reference Sphere On Wave Aberration 8.2.4 Caustics and Aberrations 8.2.5 Power Series Expansion of the Wave Aberration Function 8.2.5.1 Aberrations of Various Orders 8.2.5.2 Convergence of the Power Series of Aberrations 8.2.5.3 Types of Aberrations 8.3 Transverse Ray Aberrations Corresponding to Selected Wave Aberration Polynomial Terms 8.3.1 Primary Spherical Aberration 8.3.1.1 Caustic Surface 8.3.2 Primary Coma 8.3.3 Primary Astigmatism 8.3.4 Primary Curvature 8.3.5 Primary Distortion 8.3.6 Mixed and Higher Order Aberration Terms 8.4 Longitudinal Aberrations 8.5 Aplanatism and Isoplanatism 8.5.1 Coma-Type Component of Wave Aberration and Linear Coma 8.5.2 Total Linear Coma From Properties of Axial Pencil 8.5.3 Offence Against Sine Condition (OSC’) 8.5.4 Staeble – Lihotzky Condition 8.6 Analytical Approach for Correction of Total Aberrations References 9 Chromatic Aberrations 9.1 Introduction 9.2 Dispersion of Optical Materials 9.2.1 Interpolation of Refractive Indices 9.2.2 Abbe Number 9.2.3 Generic Types of Optical Glasses and Glass Codes 9.3 Paraxial Chromatism 9.3.1 A Single Thin Lens: Axial Colour and Lateral Colour 9.3.2 A Thin Doublet and Achromatic Doublets 9.3.2.1 Synthesis of a Thin Lens of a Given Power and an Arbitrary 9.3.3 Secondary Spectrum and Relative Partial Dispersion 9.3.4 Apochromats and Superachromats 9.3.5 ‘Complete’ Or ‘Total’ Achromatization 9.3.5.1 Harting’s Criterion 9.3.6 A Separated Thin Lens Achromat (Dialyte) 9.3.7 A One-Glass Achromat 9.3.8 Secondary Spectrum Correction With Normal Glasses 9.3.9 A Thick Lens Or a Compound Lens System 9.4 Chromatism Beyond the Paraxial Domain References 10 Finite Or Total Aberrations From System Data By Ray Tracing 10.1 Evaluation of Total Or Finite Wavefront Aberration (Monochromatic) 10.1.1 Wave Aberration By a Single Refracting Interface in Terms of Optical Path Difference (OPD) 10.1.2 Rays’ Own Focus and Invariant Foci of Skew Rays 10.1.3 Pupil Exploration By Ray Tracing 10.1.4 A Theorem of Equally Inclined Chords Between Two Skew Lines 10.1.5 Computation of Wave Aberration in an Axi-Symmetric System 10.1.6 Computation of Transverse Ray Aberrations in an Axi-Symmetric System 10.2 Measures for Nonparaxial Chromatism 10.2.1 Spherochromatism 10.2.2 Conrady Chromatic Aberration Formula 10.2.3 Image Space Associated Rays in Conrady Chromatic Aberration Formula 10.2.4 Evaluation of Exact Chromatic Aberration Using Object Space Associated Rays References 11 Hopkins’ Canonical Coordinates and Variables in Aberration Theory 11.1 Introduction 11.2 Canonical Coordinates: Axial Pencils 11.3 Canonical Coordinates: Extra-Axial Pencils 11.4 Reduced Pupil Variables 11.5 Reduced Image Height and Fractional Distortion 11.6 Pupil Scale Ratios 11.6.1 Entrance Pupil Scale Ratios and 11.6.2 Exit Pupil Scale Ratios and 11.7 and From S and T Ray Traces 11.8 Local Sagittal and Tangential Invariants for Extra-Axial Images 11.9 Reduced Coordinates On the Object/Image Plane and Local Magnifications 11.10 Canonical Relations: Generalized Sine Condition References 12 Primary Aberrations From System Data 12.1 Introduction 12.2 Validity of the Use of Paraxial Ray Parameters for Evaluating Surface Contribution to Primary Wavefront Aberration 12.3 Primary Aberrations and Seidel Aberrations 12.4 Seidel Aberrations in Terms of Paraxial Ray Trace Data 12.4.1 Paraxial (Abbe’s) Refraction Invariant 12.4.2 Seidel Aberrations for Refraction By a Spherical Interface 12.4.3 Seidel Aberrations in an Axi-Symmetric System Consisting of Multiple Refracting Interfaces 12.4.4 Seidel Aberrations of a Plane Parallel Plate 12.4.5 Seidel Aberrations of a Spherical Mirror 12.4.6 Seidel Aberrations of a Refracting Aspheric Interface 12.4.6.1 Mathematical Representation of an Aspheric Surface 12.4.6.2 Seidel Aberrations of the Smooth Aspheric Refracting Interface 12.5 Axial Colour and Lateral Colour as Primary Aberrations References 13 Higher Order Aberrations in Practice 13.1 Evaluation of Aberrations of Higher Orders 13.2 A Special Treatment for Tackling Higher Order Aberrations in Systems With Moderate Aperture and Large Field 13.3 Evaluation of Wave Aberration Polynomial Coefficients From Finite Ray Trace Data References 14 Thin Lens Aberrations 14.1 Primary Aberrations of Thin Lenses 14.2 Primary Aberrations of a Thin Lens (With Stop On It) in Object and Image Spaces of Unequal Refractive Index 14.3 Primary Aberrations of a Thin Lens (With Stop On It) With Equal Media in Object and Image Spaces 14.4 Primary Aberrations of a Thin Lens (With Stop On It) in Air 14.5 Structural Aberration Coefficients 14.6 Use of Thin Lens Aberration Theory in Structural Design of Lens Systems 14.7 Transition From Thin Lens to Thick Lens and Vice Versa 14.8 Thin Lens Modelling of Diffractive Lenses References 15 Stop Shift, Pupil Aberrations, and Conjugate Shift 15.1 Axial Shift of the Aperture Stop 15.1.1 The Eccentricity Parameter 15.1.2 Seidel Difference Formula 15.1.3 Stop-Shift Effects On Seidel Aberrations in Refraction By a Single Surface 15.1.4 Stop-Shift Effects On Seidel Aberrations in an Axi-Symmetric System 15.1.5 Stop-Shift Effects On Seidel Aberrations in a Single Thin Lens 15.1.6 Corollaries 15.2 Pupil Aberrations 15.2.1 Relation Between Pupil Aberrations and Image Aberrations 15.2.2 Effect of Stop Shift On Seidel Spherical Aberration of the Pupil 15.2.3 Effect of Stop Shift On Seidel Longitudinal Chromatic Aberration of the Pupil 15.2.4 A Few Well-Known Effects of Pupil Aberrations On Imaging of Objects [9–15] 15.3 Conjugate Shift 15.3.1 The Coefficients of Seidel Pupil Aberrations After Object Shift in Terms of the Coefficients of Seidel Pupil ... 15.3.2 The Coefficients of Seidel Pupil Aberrations Before Object Shift in Terms of Coefficients of Seidel Image ... 15.3.3 The Coefficients of Seidel Image Aberrations After Object Shift in Terms of Coefficients of Seidel Pupil Aberrations ... 15.3.4 Effects of Conjugate Shift On the Coefficients of Seidel Image Aberrations 15.3.5 The Bow–Sutton Conditions References 16 Role of Diffraction in Image Formation 16.1 Raison d’Être for ‘Diffraction Theory of Image Formation’ Observation I Observation II Observation III 16.2 Diffraction Theory of the Point Spread Function 16.2.1 The Huygens–Fresnel Principle 16.2.2 Diffraction Image of a Point Object By an Aberration Free Axi-Symmetric Lens System 16.2.3 Physical Significance of the Omitted Phase Term 16.2.4 Anamorphic Stretching of PSF in Extra-Axial Case 16.3 Airy Pattern 16.3.1 Factor of Encircled Energy 16.4 Resolution and Resolving Power 16.4.1 Two-Point Resolution 16.4.2 Rayleigh Criterion of Resolution 16.4.3 Sparrow Criterion of Resolution 16.4.4 Dawes Criterion of Resolution 16.4.5 Resolution in the Case of Two Points of Unequal Intensity 16.4.6 Resolution in the Case of Two Mutually Coherent Points 16.4.7 Breaking the Diffraction Limit of Resolution 16.4.7.1 Use of Phase-Shifting Mask 16.4.7.2 Superresolution Over a Restricted Field of View 16.4.7.3 Confocal Scanning Microscopy 16.4.7.4 Near Field Superresolving Aperture Scanning References 17 Diffraction Images By Aberrated Optical Systems 17.1 Point Spread Function (PSF) for Aberrated Systems 17.1.1 PSF of Airy Pupil in Different Planes of Focus 17.1.2 Distribution of Intensity at the Centre of the PSF as a Function of Axial Position of the Focal Plane 17.1.3 Determination of Intensity Distribution in and Around Diffraction Images By Aberrated Systems 17.1.4 Spot Diagrams 17.2 Aberration Tolerances 17.2.1 Rayleigh Quarter-Wavelength Rule 17.2.2 Strehl Criterion 17.2.3 Strehl Ratio in Terms of Variance of Wave Aberration 17.2.3.1 Use of Local Variance of Wave Aberration 17.2.3.2 Tolerance On Variance of Wave Aberration in Highly Corrected Systems 17.2.3.3 Tolerance On Axial Shift of Focus in Aberration-Free Systems 17.2.3.4 Tolerance On Primary Spherical Aberration 17.3 Aberration Balancing 17.3.1 Tolerance On Secondary Spherical Aberration With Optimum Values for Primary Spherical Aberration and Defect of Focus 17.3.2 Tolerance On Primary Coma With Optimum Value for Transverse Shift of Focus 17.3.3 Tolerance On Primary Astigmatism With Optimum Value for Defect of Focus 17.3.4 Aberration Balancing and Tolerances On a FEE-Based Criterion 17.4 Fast Evaluation of the Variance of Wave Aberration From Ray Trace Data 17.5 Zernike Circle Polynomials 17.6 Role of Fresnel Number in Imaging/Focusing 17.7 Imaging/Focusing in Optical Systems With Large Numerical Aperture References 18 System Theoretic Viewpoint in Optical Image Formation 18.1 Quality Assessment of Imaging of Extended Objects: A Brief Historical Background 18.2 System Theoretic Concepts in Optical Image Formation 18.2.1 Linearity and Principle of Superposition 18.2.2 Space Invariance and Isoplanatism 18.2.3 Image of an Object By a Linear Space Invariant Imaging System 18.3 Fourier Analysis 18.3.1 Alternative Routes to Determine Image of an Object 18.3.2 Physical Interpretation of the Kernel of Fourier Transform 18.3.3 Reduced Period and Reduced Spatial Frequency 18.3.4 Line Spread Function 18.3.5 Image of a One-Dimensional Object 18.3.6 Optical Transfer Function (OTF), Modulation Transfer Function (MTF), and Phase Transfer Function (PTF) 18.3.7 Effects of Coherence in Illumination On Extended Object Imagery 18.4 Abbe Theory of Coherent Image Formation 18.5 Transfer Function, Point Spread Function, and the Pupil Function 18.5.1 Amplitude Transfer Function (ATF) in Imaging Systems Using Coherent Illumination 18.5.1.1 ATF in Coherent Diffraction Limited Imaging Systems 18.5.1.2 Effects of Residual Aberrations On ATF in Coherent Systems 18.5.2 Optical Transfer Function (OTF) in Imaging Systems Using Incoherent Illumination 18.5.2.1 OTF in Incoherent Diffraction Limited Imaging Systems 18.5.2.2 Effects of Residual Aberrations On OTF in Incoherent Systems 18.5.2.3 Effects of Defocusing On OTF in Diffraction Limited Systems 18.5.2.4 OTF in Incoherent Imaging Systems With Residual Aberrations 18.5.2.5 Effects of Nonuniform Real Amplitude in Pupil Function On OTF 18.5.2.6 Apodization and Inverse Apodization 18.6 Aberration Tolerances Based On OTF 18.6.1 The Wave Aberration Difference Function 18.6.2 Aberration Tolerances Based On the Variance of Wave Aberration Difference Function 18.7 Fast Evaluation of Variance of the Wave Aberration Difference Function From Finite Ray Trace Data 18.8 Through-Focus MTF 18.9 Interrelationship Between PSF, LSF, ESF, BSF, and OTF 18.9.1 Relation Between PSF, LSF, and OTF for Circularly Symmetric Pupil Function 18.9.2 Relation Between ESF, LSF, and OTF 18.9.3 BSF and OTF 18.10 Effects of Anamorphic Imagery in the Off-Axis Region On OTF Analysis 18.11 Transfer Function in Cascaded Optical Systems 18.12 Image Evaluation Parameters in Case of Polychromatic Illumination 18.12.1 Polychromatic PSF 18.12.2 Polychromatic OTF 18.13 Information Theoretic Concepts in Image Evaluation References 19 Basics of Lens Design 19.1 Statement of the Problem of Lens Design 19.2 Lens Design Methodology 19.3 Different Approaches for Lens Design 19.4 Tackling Aberrations in Lens Design 19.4.1 Structural Symmetry of the Components On the Two Sides of the Aperture Stop 19.4.2 Axial Shift of the Aperture Stop 19.4.3 Controlled Vignetting 19.4.4 Use of Thin Lens Approximations 19.4.5 D-Number and Aperture Utilization Ratio 19.5 Classification of Lens Systems 19.5.1 Afocal Lenses 19.5.2 Telephoto Lenses and Wide-Angle Lenses 19.5.3 Telecentric Lenses 19.5.4 Scanning Lenses 19.5.5 Lenses With Working Wavelength Beyond the Visible Range 19.5.6 Unconventional Lenses and Lenses Using Unconventional Optical Elements 19.6 A Broad Classification of Lenses Based On Aperture, Field of View, Axial Location of Aperture Stop, Image Quality, ... 19.7 Well-Known Lens Structures in Infinity Conjugate Systems 19.8 Manufacturing Tolerances References 20 Lens Design Optimization 20.1 Optimization of Lens Design: From Dream to Reality 20.2 Mathematical Preliminaries for Numerical Optimization 20.2.1 Newton–Raphson Technique for Solving a Nonlinear Algebraic Equation 20.2.2 Stationary Points of a Univariate Function 20.2.3 Multivariate Minimization 20.2.3.1 Basic Notations 20.2.3.2 The Method of Steepest Descent 20.2.3.3 Newton’s Method 20.2.4 Nonlinear Least-Squares 20.2.4.1 The Gauss–Newton Method 20.2.4.2 The Levenberg–Marquardt Method 20.2.5 Handling of Constraints 20.3 Damped Least-Squares (DLS) Method in Lens Design Optimization 20.3.1 Degrees of Freedom 20.3.2 Formation of the Objective Function 20.3.3 Least-Squares Optimization With Total Hessian Matrix 20.3.4 General Form of the Damping Factor 20.3.5 The Scaling Damping Factor 20.3.6 Truncated Defect Function 20.3.7 Second-Derivative Damping Factor 20.3.8 Normal Equations 20.3.9 Global Damping Factor . 20.3.10 Control of Gaussian Parameters 20.3.11 Control of Boundary Conditions 20.3.11.1 Edge and Centre Thickness Control 20.3.11.2 Control of Boundary Conditions Imposed By Available Glass Types 20.4 Evaluation of Aberration Derivatives References 21 Towards Global Synthesis of Optical Systems 21.1 Local Optimization and Global Optimization: The Curse of Dimensionality 21.2 Deterministic Methods for Global/Quasi-Global Optimization 21.2.1 Adaptive/Dynamic Defect Function 21.2.2 Partitioning of the Design Space 21.2.3 The Escape Function and the ‘Blow-Up/Settle-Down’ Method 21.2.4 Using Saddle Points of Defect Function in Design Space 21.2.5 Using Parallel Plates in Starting Design 21.3 Stochastic Global Optimization Methods 21.3.1 Simulated Annealing 21.3.2 Evolutionary Computation 21.3.3 Neural Networks, Deep Learning, and Fuzzy Logic 21.3.4 Particle Swarm Optimization 21.4 Global Optimization By Nature-Inspired and Bio-Inspired Algorithms 21.5 A Prophylactic Approach for Global Synthesis 21.6 Multi-Objective Optimization and Pareto-Optimality 21.7 Optical Design and Practice of Medicine References Epilogue Index