دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Patrick Suppes, David H. Krantz, R. Duncan Luce, Amos Tversky سری: Dover Books on Mathematics ISBN (شابک) : 0486453162, 9780486453163 ناشر: Dover Publications سال نشر: 2007 تعداد صفحات: 388 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Foundations of Measurement Volume III: Representation, Axiomatization, and Invariance به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی اندازه گیری دوره سوم: نمایندگی، Axiomatization و Invariance نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Frontispiece by Ruth Weisberg Foundations of Measurement, VOLUME III: Representation, Axiomatization, and Invariance Copyright © 1990 by David H. Krantz, R. Duncan Luce, Patrick Suppes,and Barbara Tversky ISBN 0-486-45316-2 Table of Contents Preface Acknowledgments Chapter 18 Overview 18.1 NONADDITIVE REPRESENTATIONS (CHAPTER 19) 18.1.1 Examples 18.1.2 Representation and Uniqueness of Positive Operations 18.1.3 Intensive Structures 18.1.4 Conjoint Structures and Distributive Operations 18.2 SCALE TYPES (CHAPTER 20) 18.2.1 A Classification of Automorphism Groups 18.2.2 Unit Representations 18.2.3 Characterization of Homogeneous Concatenation and Conjoint Structures 18.2.4 Reprise 18.3 AXIOMATIZATION (CHAPTER 21) 18.3.1 Types of Axioms 18.3.2 Theorems on Axiomatizability 18.3.3 Testability of Axioms 18.4 INVARIANCE AND MEANINGFULNESS (CHAPTER 22) 18.4.1 Types of Invariance 18.4.2 Applications of Meaningfulness Chapter 19 Nonadditive Representations 19.1 INTRODUCTION 19.1.1 Inessential and Essential Nonadditivities 19.1.2 General Binary Operations 19.1.3 Overview 19.2 TYPES OF CONCATENATION STRUCTURE 19.2.1 Concatenation Structures and Their Properties 19.2.2 Some Numerical Examples 19.2.3 Archimedean Properties 19.3 REPRESENTATIONS OF PCSs 19.3.1 General Definitions 19.3.2 Uniqueness and Construction of a Representation of a PCS 19.3.3 Existence of a Representation 19.3.4 Automorphism Groups of PCSs 19.3.5 Continuous PCSs 19.4 COMPLETIONS OF TOTAL ORDERS AND PCSs 19.4.1 Order Isomorphisms onto Real Intervals 19.4.2 Completions of Total Orders 19.4.3 Completions of Closed PCSs 19.5 PROOFS ABOUT CONCATENATION STRUCTURES 19.5.1 Theorem 1 (p. 37) 19.5.2 Lemmas 1-6, Theorem 2 19.5.3 Theorem 2 (p. 39) 19.5.4 Construction of PCS Homomorphisms 19.5.5 Theorem 3 (p. 41) 19.5.6 Theorem 4 (p. 45) 19.5.7 Theorem 5 (p. 46) 19.5.8 Theorem 6 (p. 47) 19.5.9 Corollary to Theorem 7 (p. 50) 19.5.10 Theorem 9 (p. 54) 19.6 CONNECTIONS BETWEEN CONJOINT AND CONCATENATION STRUCTURES 19.6.1 Conjoint Structures: Introduction and General Definitions 19.6.2 Total Concatenation Structures Induced by Conjoint Structures 19.6.3 Factorizable Automorphisms 19.6.4 Total Concatenation Structures Induced by Closed, Idempotent Concatenation Structures 19.6.5 Intensive Structures Related to PCSs by Doubling Functions 19.6.6 Operations That Distribute over Conjoint Structures 19.7 REPRESENTATIONS OF SOLVABLE CONJOINT AND CONCATENATION STRUCTURES 19.7.1 Conjoint Structures 19.7.2 Solvable, Closed, Archimedean Concatenation Structures 19.8 PROOFS 19.8.1 Theorem 11 (p. 78) 19.8.2 Theorem 12 (p. 80) 19.8.3 Theorem 13 (p. 81) 19.8.4 Theorem 14, Part (iii) (p. 81) 19.8.5 Theorem 15 (p. 82) 19.8.6 Theorem 18 (p. 86) 19.8.7 Theorem 21 (p. 88) 19.9 BISYMMETRY AND RELATED PROPERTIES 19.9.1 General Definitions 19.9.2 Equivalences in Closed, Idempotent, Solvable, Dedekind Complete Structures 19.9.3 Bisymmetry in the 1-Point Unique Case EXERCISES Chapter 20 Scale Types 20.1 INTRODUCTION 20.1.1 Constructibility and Symmetry 20.1.2 Problem in Understanding Scale Types 20.2 HOMOGENEITY, UNIQUENESS, AND SCALE TYPE 20.2.1 Stevens\' Classification 20.2.2 Decomposing the Classification 20.2.3 Formal Definitions 20.2.4 Relations among Structure, Homogeneity, and Uniqueness 20.2.5 Scale Types of Real Relational Structures 20.2.6 Structures with Homogeneous, Archimedean Ordered Translation Groups 20.2.7 Representations of Dedekind Complete Distributive Triples 20.3 PROOFS 20.3.1 Theorem 2 (p. 117) 20.3.2 Theorem 3 (p. 118) 20.3.3 Theorem 4 (p. 118) 20.3.4 Theorem 5 (p. 120) 20.3.5 Theorem 7 (p. 124) 20.3.6 Theorem 8 (p. 125) 20.4 HOMOGENEOUS CONCATENATION STRUCTURES 20.4.1 Nature of Homogeneous Concatenation Structures 20.4.2 Real Unit Concatenation Structures 20.4.3 Characterization of Homogeneity: PCS 20.4.4 Characterizations of Homogeneity: Solvable, Idempotent Structures 20.4.5 Mixture Spaces of Gambles 20.4.6 The Dual Bilinear Utility Model 20.5 PROOFS 20.5.1 Theorem 9 (p. 142) 20.5.2 Theorem 11 (p. 144) 20.5.3 Theorem 24, Chapter 19 (p. 103) 20.5.4 Theorem 14 (p. 147) 20.5.5 Theorem 15 (p. 147) 20.5.6 Theorem 16 (p. 148) 20.5.7 Theorem 17 (p. 148) 20.5.8 Theorem 18 (p. 150) 20.5.9 Theorem 19 (p. 153) 20.6 HOMOGENEOUS CONJOINT STRUCTURES 20.6.1 Component Homogeneity and Uniqueness 20.6.2 Singular Points in Conjoint Structures 20.6.3 Forcing the Thomsen Condition 20.7 PROOFS 20.7.1 Theorem 22 (p. 181) 20.7.2 Theorem 23 (p. 182) 20.7.3 Theorem 24 (p. 182) 20.7.4 Theorem 25 (p. 183) EXERCISES Chapter 21 Axiomatization 21.1 AXIOM SYSTEMS AND REPRESENTATIONS 21.1.1 Why Do Scientists and Mathematicians Axiomatize? 21.1.2 The Axiomatic-Representational Viewpoint in Measurement 21.1.3 Types of Representing Structures 21.2 ELEMENTARY FORMALIZATION OF THEORIES 21.2.1 Elementary Languages 21.2.2 Models of Elementary Languages 21.2.3 General Theorems about Elementary Logic 21.2.4 Elementary Theories 21.3 DEFINABILITY AND INTERPRETABILITY 21.3.1 Definability 21.3.2 Interpretability 21.4 SOME THEOREMS ON AXIOMATIZABILITY 21.5 PROOFS 21.5.1 Theorem 6 (p. 226) 21.5.2 Theorem 7 (p. 227) 21.5.3 Theorem 8 (p. 228) 21.5.4 Theorem 9 (p. 229) 21.6 FINITE AXIOMATIZABILITY 21.6.1 Axiomatizable by a Universal Sentence 21.6.2 Proof of Theorem 12 (p. 237) 21.6.3 Finite Axiomatizability of Finitary Classes 21.7 THE ARCHIMEDEAN AXIOM 21.8 TESTABILITY OF AXIOMS 21.8.1 Finite Data Structures 21.8.2 Convergence of Finite to Infinite Data Structures 21.8.3 Testability and Constructability 21.8.4 Diagnostic versus Global Tests EXERCISES Chapter 22 Invariance and Meaning fulness 22.1 INTRODUCTION 22.2 METHODS OF DEFINING MEANINGFUL RELATIONS 22.2.1 Definitions in First-Order Theories 22.2.2 Reference and Structure Invariance 22.2.3 An Example: Independence in Probability Theory 22.2.4 Definitions with Particular Representations 22.2.5 Parametrized Numerical Relations 22.2.6 An Example: Hooke\'s Law 22.2.7 A Necessary Condition for Meaningfulness 22.2.8 Irreducible Structures: Reference Invariance of Numerical Equality 22.3 CHARACTERIZATIONS OF REFERENCE INVARIANCE 22.3.1 Permissible Transformations 22.3.2 The Criterion of Invariance under Permissible Transformations 22.3.3 The Condition of Structure Invariance 22.4 PROOFS 22.4.1 Theorem 3 (p. 287) 22.4.2 Theorem 4 (p. 287) 22.4.3 Theorem 5 (p. 288) 22.5 DEFINABILITY 22.6 MEANINGFULNESS AND STATISTICS 22.6.1 Examples 22.6.2 Meaningful Relations Involving Population Means 22.6.3. Inferences about Population Means 22.6.4 Parametric Models for Populations 22.6.5 Measurement Structures and Parametric Models for Populations 22.6.6 Meaningful Relations in Uniform Structures 22.7 DIMENSIONAL INVARIANCE 22.7.1 Structures of Physical Quantities 22.7.2 Triples of Scales 22.7.3 Representation and Uniqueness Theorem for Physical Attributes 22.7.4 Physically Similar Systems 22.7.5 Fundamental versus Index Measurement 22.8 PROOFS 22.8.1 Theorem 6 (p. 315) 22.8.2 Theorem 7 (p. 315) 22.9 REPRISE: UNIQUENESS, AUTOMORPHISMS, AND CONSTRUCTABILITY 22.9.1 Alternative Representations 22.9.2 Nonuniqueness and Automorphisms 22.9.3 Invariance under Automorphisms 22.9.4 Constructability of Representations EXERCISES References Author Index Subject Index Back Cover