ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Foundations of Interconnect and Microstrip Design

دانلود کتاب مبانی اتصال و طراحی میکرواستریپ

Foundations of Interconnect and Microstrip Design

مشخصات کتاب

Foundations of Interconnect and Microstrip Design

ویرایش: 3 
نویسندگان: ,   
سری:  
ISBN (شابک) : 0471607010, 9780471607014 
ناشر: Wiley 
سال نشر: 2001 
تعداد صفحات: 548 
زبان: English  
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 30 مگابایت 

قیمت کتاب (تومان) : 38,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Foundations of Interconnect and Microstrip Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی اتصال و طراحی میکرواستریپ نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مبانی اتصال و طراحی میکرواستریپ

با تکیه بر موفقیت دو نسخه قبلی Foundations ofInterconnect و Microstrip Design مطالب جدید، به روز و اصلاح شده گسترده ای را بر اساس آخرین تحقیقات ارائه می دهد. علاوه بر اطلاعات جامع در مورد طراحی مدارهای میکرواستریپ، فصل کاملاً جدیدی در مورد طراحی موجبر همسطح (CPW) و مطالب جدید قابل توجهی در مورد طراحی اتصالات دیجیتالی با نرخ گیگاهرتز بر روی تراشه و خاموش وجود دارد. این ویرایش سوم که به شدت طراحی محور است، درک اساسی را در اختیار خواننده قرار می دهد. این زمینه به سرعت در حال گسترش است و آن را به منبعی قطعی برای مهندسین و محققان حرفه‌ای و مرجعی ضروری برای دانشجویان ارشد مهندسی الکترونیک تبدیل می‌کند. آی سی های دیجیتال، RFIC، MIC ها و MMIC های گیگشرتس * دارای اطلاعات طراحی در تشدید کننده های دی الکتریک برای فیلترها و نوسانگرها * فرمول ها و روش های طراحی برای انواع مدارات متعدد را توضیح می دهد * در مورد تکنیک های مناسب برای اجرای سریع CAE بحث می کند * شامل ضمیمه های جامعی است که مفاهیم کلیدی خط انتقال را پوشش می دهد. تجزیه و تحلیل عامل Q، تئوری پارامترهای پراکندگی، و مدل سازی اتصال در شبیه سازهای مدار


توضیحاتی درمورد کتاب به خارجی

Building on the success of the previous two editions Foundations ofInterconnect and Microstrip Design offers extensive new, updated andrevised material based upon the latest research. In addition to thecomprehensive information on designing microstrip circuits there is anentirely new chapter on coplanar waveguide (CPW) design and substantialnew material on designing gigahertz-rate digital interconnects both on andoff chip.Strongly design-oriented, this third edition provides the reader with afundamental understanding of this fast expanding field making it a definitivesource for professional engineers and researchers and an indispensablereference for senior students in electronic engineering.* Presents a unified treatment of high speed digital interconnect and microwave transmission line design* Provides up-to-date interconnect design information for gigshertz digital ICs, RFICs, MICs and MMICs* Features design information on dielectric resonators for filters and oscillators* Explains design formulas and procedures for numerous types of circuits* Discusses techniques suitable for rapid CAE implementation* Includes exhaustive appendices covering key concepts, transmission line thory, Q-factor analysis, scattering parameter theory, and interconnect modelling in circuit simulators



فهرست مطالب

Front-cover......Page 1
Front Matter......Page 2
Preface......Page 4
Table of Contents......Page 6
1.1 Interconnect as Part of a Packaging Hierarchy......Page 16
1.2 The Physical Basis of Interconnects......Page 17
1.2.1 What an Interconnect is and How Information is Transmitted......Page 18
1.3.1 Transmission of a Pulse......Page 19
1.3.2 Transverse Electromagnetic Lines (TEM-Lines)......Page 21
1.3.4 The Effect of Dielectric......Page 23
1.3.5 Frequency-Dependent Charge Distribution......Page 24
1.3.6 Dispersion......Page 26
1.4 When an Interconnect Should be Treated as a Transmission Line......Page 27
1.6 Primary Transmission Line Constants......Page 29
1.7 Secondary Constants for Transmission Lines......Page 30
1.8 Transmission Line Impedances......Page 32
1.9.1 Reflection and Voltage Standing-Wave Ratio (VSWR)......Page 33
1.9.3 Effect on Signal Integrity......Page 34
1.10 Multiple Conductors......Page 38
1.11 Return Currents......Page 40
1.11.1 Common Impedance Coupling......Page 42
1.12 Modelling of Interconnects......Page 43
1.13 Summary......Page 44
2.1 Overview of On-Chip Interconnects......Page 45
2.1.1 Types of On-Chip Interconnects......Page 46
2.2 Experimental Characterization of an On-Chip Interconnect......Page 48
2.3 RC Modelling On-Chip Interconnects......Page 50
2.3.1 Delay Modelling......Page 51
2.3.2 RC Modelling......Page 54
2.4 Modelling Inductance......Page 56
2.4.1 When are Inductance Effects Important?......Page 57
2.4.2 Inductance Extraction......Page 59
2.5.2 Transmission Line Return Paths......Page 60
3.2 Microwave Frequencies and Applications......Page 62
3.3.1 Imageline......Page 65
3.3.3 Finline (\'E-Plane\' Circuits)......Page 67
3.3.5 Slotline......Page 68
3.3.7 Coplanar Waveguide......Page 69
3.3.9 Stripline......Page 70
3.3.10 Summary of Interconnect Properties......Page 71
3.4 Substrates for Hybrid Microcircuits......Page 72
3.4.2 Ceramic Substrates......Page 73
3.4.5 Sapphire - The \'Benchmark\' Substrate Material......Page 76
3.5.1 Plate-through Technique......Page 77
3.5.4 Thin Resistive Films......Page 78
3.6.1 Pastes, Printing and Processing for Thick-Film Modules......Page 79
3.7.1 Introduction......Page 80
3.7.3 Metallization......Page 82
3.7.4 Low-K Dielectrics......Page 83
3.8 Printed Circuit Boards......Page 84
3.8.1 Organic PCBs......Page 86
3.9 Multichip Modules......Page 87
3.9.2 MCM-C Substrates......Page 88
3.9.3 MCM-D Substrates......Page 89
3.9.4 Characterization of Interconnects on a Multichip Module: A Case Study......Page 90
3.9.5 MCM Summary......Page 92
4.1.1 Digital Interconnect......Page 95
4.1.2 A Transistor Amplifier Input Network......Page 96
4.1.3 The Geometry of Microstrip......Page 97
4.3 Static-TEM Parameters......Page 98
4.3.1 The Characteristic Impedance Z_0......Page 99
4.3.2 The Effective Microstrip Permittivity epsilon_eff......Page 100
4.3.3 Synthesis: The Width-to-Height Ratio w/h......Page 101
4.4 Approximate Graphically-Based Synthesis......Page 102
4.5 Formulas for Accurate Static-TEM Design Calculations......Page 104
4.5.1 Synthesis Formulas (Z_0 and f Given)......Page 105
4.6 Analysis Techniques Requiring Substantial Computer Power......Page 106
4.7 A Worked Example of Static-TEM Synthesis......Page 107
4.7.2 Accurately Calculated Results......Page 108
4.8 Microstrip on a Dielectrically Anisotropic Substrate......Page 109
4.9 Microstrip on a Ferrite Substrate......Page 115
4.10.1 Effects of Finite Strip Thickness......Page 117
4.10.2 Effects of a Metallic Enclosure......Page 119
4.10.3 Effects due to Manufacturing Tolerances......Page 120
4.11 Pulse Propagation along Microstrip Lines......Page 121
4.12 Recommendations Relating to the Static-TEM Approaches......Page 122
4.12.2 Microstrip on a Sapphire (Anisotropic) Substrate......Page 123
4.12.3 Design Corrections for Microstrip on Non-Semiconductor Substrates......Page 124
5.2 Dispersion in Microstrip......Page 125
5.3 Approximate Calculations Accounting for Dispersion......Page 130
5.4.1 Edwards and Owens\' Expressions......Page 134
5.4.2 Expressions Suitable for Millimetre-Wave Design......Page 136
5.4.3 Dispersion Curves Derived from Simulations......Page 140
5.5.2 Effects of a Dielectrically Anisotropic Substrate......Page 142
5.6 Designs Requiring Dispersion Calculations - Worked Examples......Page 143
5.7.1 One Example of a \'Classic\' Frequency-Dependent Computer-Based Field Solution......Page 145
5.7.2 Analysis of Arbitrary Planar Configurations......Page 146
5.7.3 Asymmetry Effects......Page 147
5.7.4 Time-Domain Approaches......Page 148
5.8.1 Different Definitions and Trends with Increasing Frequency......Page 149
5.8.2 Use of the Planar Waveguide Model......Page 151
5.8.3 A Further Alternative Expression......Page 152
5.8.4 A Design Algorithm for Microstrip Width......Page 153
5.9.1 The TM Mode Limitation......Page 154
5.9.2 The Lowest-Order Transverse Microstrip Resonance......Page 157
5.10.1 Q-Factor and Attenuation Coefficient......Page 159
5.10.3 Dielectric Loss......Page 161
5.10.4 Radiation......Page 162
5.10.6 Parasitic Coupling......Page 163
5.10.8 Losses in Microstrip on Semi-Insulating GaAs......Page 164
5.11 Superconducting Microstrips......Page 165
5.12.1 Symmetrical Stripline Formulas......Page 168
5.13 Design Recommendations......Page 169
5.13.5 Recommendation 5......Page 170
5.13.7 Computer-Aided Design......Page 171
6.1 Introduction - Properties of Coplanar Waveguide......Page 172
6.2 Modelling CPWs......Page 177
6.2.1 Effective Permittivity......Page 178
6.2.2 Characteristic Impedance......Page 179
6.3.1 Analysis and Synthesis Approaches......Page 180
6.4 Loss Mechanisms......Page 181
6.4.2 Conductor Loss......Page 182
6.5.1 Fundamental and Theoretical Considerations......Page 185
6.5.2 Results from Test Runs Using Electromagnetic Simulation......Page 189
6.5.3 Experimental Results......Page 194
6.6 Discontinuities......Page 196
6.6.1 Step Changes in Width and Separation......Page 197
6.6.2 Open-Circuit......Page 200
6.6.3 Symmetric Series Gap......Page 201
6.6.4 Coplanar Short-Circuit......Page 203
11.6.3.1 High-Frequency Satellite Low-Noise Block......Page 0
6.7.1 Interdigital Capacitors and Stubs......Page 209
6.7.2 Filters......Page 212
6.7.3 Couplers and Baluns......Page 214
6.7.4 Power Dividers......Page 216
6.8.2 Multilayer CPW......Page 217
6.8.3 Trenched CPW on a Silicon MMIC......Page 219
6.8.4 Transitions between CPW and other Media......Page 220
6.9 Flip-Chip Realizations......Page 222
6.10.1 Mixers and Frequency Doubler......Page 225
6.10.2 GaAs FET Characterization and Specialized Resonators......Page 226
6.10.4 Leakage Suppression and 50 Ghz Interconnect......Page 227
6.10.5 Light Dependence of Silicon FGCPW......Page 228
6.11 Differential Line and Coplanar Strip (CPS)......Page 229
6.12 Summary......Page 234
7.1 The Main Discontinuities......Page 236
7.2 The Foreshortened Open Circuit......Page 238
7.2.1 Equivalent End-Effect Length......Page 239
7.2.2 Upper Limit to End-Effect Length (Quasi-Static Basis)......Page 241
7.3 The Series Gap......Page 242
7.4 Microstrip Short-Circuits......Page 244
7.6 The Right-Angled Bend or \'Corner\'......Page 246
7.7 Mitred or \'Matched\' Microstrip Bends - Compensation Techniques......Page 248
7.8.1 The Symmetrical Microstrip Step......Page 251
7.9 The Narrow Transverse Slit......Page 253
7.10 The Microstrip T-Junction......Page 255
7.12 Cross-Junctions......Page 258
7.13.1 Open-Circuits and Series Gaps......Page 261
7.13.2 Other Discontinuities......Page 267
7.13.3 Cross- and T-Junctions......Page 268
7.13.4 Radial Bends......Page 271
7.13.5 Frequency Dependence of Shunt Post Parameters......Page 272
7.14.1 Foreshortened Open-Circuits......Page 274
7.14.4 Right-Angled Bends: Mitring......Page 275
7.14.6 Transverse Slit......Page 276
7.14.7 The T-Junction......Page 277
7.15.2 Vias......Page 278
7.15.3 Junctions......Page 279
8.1 Structure and Applications......Page 280
8.2 Parameters and Initial Specification......Page 281
8.3 Coupled Microstrip Lines......Page 282
8.4 Characteristic Impedances in Terms of the Coupling Factor (C)......Page 284
8.5 Semi-Empirical Analysis Formulas as a Design Aid......Page 285
8.6 An Approximate Synthesis Technique......Page 287
8.7.1 Use of Bryant and Weiss\' Curves......Page 290
8.7.3 Comparison of Methods......Page 291
8.8 Coupled-Region Length......Page 292
8.9.1 Overall Effects and Getsinger\'s Model......Page 294
8.9.2 More Accurate Design Expressions, Including Dispersion......Page 296
8.9.3 Complete Coupling Section Response......Page 300
8.10 Coupler Directivity......Page 301
8.11.1 The \'Lange\' Coupler......Page 302
8.12.2 Power Losses......Page 315
8.12.3 Effects of Fabrication Tolerances......Page 316
8.13 Planar Combline Directional Couplers......Page 317
8.14 Crosstalk and Signal Distortion between Microstrip Lines Used in Digital Systems......Page 318
8.15.1 Design Procedure for Coupled Microstrips, Where the Mid-Band Coupling Factor C < …3 dB......Page 321
8.15.2 Relatively Large Coupling Factors (Typically C Greater Than or Equal to …3dB)......Page 322
8.15.3 Length of the Coupled Region......Page 323
8.15.5 Coupled Structures with Improved Performance......Page 324
8.15.8 Post-Manufacture Circuit Adjustment......Page 325
9.1.1 Maximum Average Power P_ma under CW Conditions......Page 326
9.1.2 Peak (Pulse) Power-Handling Capability......Page 327
9.2 Coaxial-to-Microstrip Transitions......Page 328
9.3.1 Ridgeline Transformer Insert......Page 330
9.3.2 Mode Changer and Balun......Page 331
9.3.3 A Waveguide-to-Microstrip Power Splitter......Page 334
9.4 Transitions between other Media and Microstrip......Page 335
9.5 Instrumentation Systems for Microstrip Measurements......Page 336
9.7 Microstrip Resonator Methods......Page 339
9.7.1 The Ring Resonator......Page 341
9.7.2 The Side-Coupled, Open-Circuit-Terminated, Straight Resonator......Page 342
9.7.3 Series-Gap Coupling of Microstrips......Page 343
9.7.4 Series-Gap-Coupled Straight Resonator Pairs......Page 345
9.7.5 The Resonant Technique due to Richings and Easter......Page 347
9.7.6 The Symmetrical Straight Resonator......Page 348
9.7.7 Resonance Methods for the Determination of Discontinuities other than Open Circuits......Page 350
9.8 Q-Factor Measurements......Page 351
9.9 Measurements on Parallel-Coupled Microstrips......Page 352
9.10 Standing-Wave Indicators in Microstrip......Page 354
9.11 Time-Domain Reflectometry (TDR) Techniques......Page 355
10.1 Radio Frequency Integrated Circuits (RFICs)......Page 357
10.1.2 On-Chip Capacitors......Page 358
10.1.3 Planar Inductors......Page 360
10.2 Terminations and Attenuators in MIC Technology......Page 363
10.3 Further Thick and Thin Film MIC Passive Components......Page 364
10.3.1.1 \'Standard\' Designs......Page 365
10.3.1.2 Broadband and Millimetre-Wave Branchline Couplers......Page 367
10.3.2 Microstrip Baluns......Page 370
10.3.3.1 Low-Pass Filters Formed with Cascaded Microstrips......Page 371
10.3.4 Bandpass Filters......Page 375
10.3.4.1 End-Coupled Bandpass Filters......Page 376
10.3.4.2 Parallel-Coupled (or Edge-Coupled) Bandpass Filters......Page 378
10.3.4.3 Impedance and Admittance Inverters; Basic Design Principles......Page 379
10.3.5 A Worked Numerical Example of a Parallel-Coupled Bandpass Filter......Page 380
10.3.6 Cad of Parallel-Coupled Bandpass Filters......Page 383
10.3.8 Filter Analysis and Design Including All Losses......Page 386
10.3.9 Bandpass Filters with Increased Bandwidth (>15%)......Page 389
10.3.11 Microstrip Radial Stubs......Page 390
10.3.12 Dielectric Resonators and Filters Using Them......Page 392
10.3.13 Spurline Bandstop Filters......Page 393
10.3.14 Filters Using Synthetic Periodic Substrates (Electromagnetic Bandgap Crystals)......Page 394
10.3.16 Isolators and Circulators......Page 395
11.1.1 High-Speed Digital Circuits......Page 398
11.2 Clock Distribution......Page 399
11.3 Rotary Clock^TM Distribution......Page 402
11.3.1 Conceptual Basis......Page 403
11.3.2 Circuit Model of a Rotary Clock^TM......Page 404
11.3.3 Case Study: A 3 GHz Rotary Clock^TM......Page 407
11.3.4 Effect of Copper Interconnect......Page 411
11.3.5 Summary......Page 414
11.4 RF and Microwave Active Devices......Page 417
11.5 Yield and Hybrid MICs......Page 418
11.6 Amplifiers......Page 419
11.7.1 Standard MIC Amplifier Modules......Page 426
11.7.2 Custom MIC Amplifier Modules......Page 427
11.8 Balanced Amplifiers......Page 429
11.9.1 Design of a Decade-Bandwidth Distributed Amplifier......Page 433
11.9.2 W-Band MMIC LNAs......Page 435
11.10 Microwave Oscillators......Page 436
11.10.1.1 Design Example......Page 438
11.10.2 DRO Oscillator Developments......Page 439
11.10.3 MMIC Oscillator Example......Page 440
11.11 Active Microwave Filters......Page 442
11.12 Phase Shifters......Page 443
A.1 Half-, Quarter-, and Eighth-Wavelength Lines......Page 444
A.2 Simple (Narrowband) Matching......Page 445
A.3 Equivalent Two-Port Networks......Page 447
A.4 Chain (ABCD) Parameters for a Uniform Length of Loss-Free Transmission Line......Page 448
A.5.1 Even and Odd Modes......Page 449
A.5.2 Overall Parameters for Couplers......Page 450
A.5.3 Analysis of Parallel-Coupled TEM-Mode Transmission Lines......Page 451
B.1 Definition......Page 457
B.2 Loaded Q-Factor......Page 458
B.3 External Q-Factor of a Straight-Edged, Open-Circuited Microstrip Resonator......Page 459
C.2 Network Parameters......Page 464
C.3 Scattering Parameters......Page 466
C.3.1 Scattering Parameters for a Two-Port Network......Page 467
C.3.2 Definitions of Two-Port S-Parameters......Page 469
C.3.3 Evaluation of Scattering Parameters......Page 470
C.3.4 Measurement of Scattering Parameters......Page 471
C.3.5 Some S-Parameter Relationships Which are Particularly Useful in Interpreting Interconnect Measurements......Page 472
C.3.6 Multiport S-Parameters......Page 473
C.3.7 Signal-Flow Graph Techniques and S-Parameters......Page 475
C.4 Scattering Transfer (or T) Parameters......Page 476
C.4.1 Cascaded Two-Port Networks: The Utility of T-Parameters......Page 477
Appendix D: Capacitance Matrix Extraction......Page 478
References......Page 481
A......Page 504
B......Page 506
C......Page 507
D......Page 512
E......Page 514
F......Page 516
G......Page 517
H......Page 518
I......Page 520
K......Page 522
L......Page 523
M......Page 524
N......Page 532
O......Page 533
P......Page 534
Q......Page 536
R......Page 537
S......Page 538
T......Page 543
V......Page 546
W......Page 547
Z......Page 548




نظرات کاربران