دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: John Vince
سری:
ISBN (شابک) : 3030420779, 9783030420772
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 416
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Foundation Mathematics for Computer Science: A Visual Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات بنیاد برای علوم کامپیوتر: رویکردی تصویری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در این ویرایش دوم بنیاد ریاضیات برای علوم کامپیوتر، جان وینس کتاب اصلی را بررسی و ویرایش کرده است و فصلهای جدیدی در زمینه ترکیبیات، احتمالات، مدولار نوشته است. اعداد حسابی و مختلط این موضوعات مکمل فصول موجود در سیستم های اعداد، جبر، منطق، مثلثات، سیستم های مختصات، تعیین کننده ها، بردارها، ماتریس ها، تبدیل های ماتریس هندسی، حساب دیفرانسیل و انتگرال هستند. در طول این سفر، نویسنده به موضوعات باطنی بیشتری مانند ربعها، اکتونیونها، جبر گراسمن، مختصات بری مرکزی، مجموعههای متعدی و اعداد اول میپردازد.
جان وینس طیف وسیعی از موضوعات ریاضی را برای ارائه پایه ای محکم برای دوره کارشناسی در علوم کامپیوتر شرح می دهد که با مروری بر سیستم های اعداد و ارتباط آنها با رایانه های دیجیتال شروع می شود و با حساب دیفرانسیل و انتگرال پایان می یابد. خوانندگان متوجه خواهند شد که رویکرد بصری نویسنده درک آنها را در مورد اینکه چرا ساختارهای ریاضی خاصی وجود دارند، همراه با نحوه استفاده از آنها در برنامه های کاربردی دنیای واقعی، بسیار بهبود می بخشد.این ویرایش دوم شامل تصاویر جدید و تمام رنگی برای شفافسازی توصیفات ریاضی است و در برخی موارد، معادلات نیز رنگی میشوند تا الگوهای جبری حیاتی را نشان دهند. نمونه های کار شده متعدد به تحکیم درک مفاهیم انتزاعی ریاضی کمک می کند.
چه قصد دارید در برنامهنویسی، تجسم علمی، هوش مصنوعی، طراحی سیستمها یا محاسبات بیدرنگ شغلی را دنبال کنید، باید سبک ادبی نویسنده را بهطور واضح و جذاب بیابید و شما را برای پیشرفتهای بیشتر آماده کنید. متون.
In this second edition of Foundation Mathematics for Computer Science, John Vince has reviewed and edited the original book and written new chapters on combinatorics, probability, modular arithmetic and complex numbers. These subjects complement the existing chapters on number systems, algebra, logic, trigonometry, coordinate systems, determinants, vectors, matrices, geometric matrix transforms, differential and integral calculus. During this journey, the author touches upon more esoteric topics such as quaternions, octonions, Grassmann algebra, Barrycentric coordinates, transfinite sets and prime numbers.
John Vince describes a range of mathematical topics to provide a solid foundation for an undergraduate course in computer science, starting with a review of number systems and their relevance to digital computers, and finishing with differential and integral calculus. Readers will find that the author’s visual approach will greatly improve their understanding as to why certain mathematical structures exist, together with how they are used in real-world applications.This second edition includes new, full-colour illustrations to clarify the mathematical descriptions, and in some cases, equations are also coloured to reveal vital algebraic patterns. The numerous worked examples will help consolidate the understanding of abstract mathematical concepts.
Whether you intend to pursue a career in programming, scientific visualisation, artificial intelligence, systems design, or real-time computing, you should find the author’s literary style refreshingly lucid and engaging, and prepare you for more advanced texts.
Preface Contents 1 Visual Mathematics 1.1 Visual Brains Versus Analytic Brains 1.2 Learning Mathematics 1.3 What Makes Mathematics Difficult? 1.4 Does Mathematics Exist Outside Our Brains? 1.5 Symbols and Notation 2 Numbers 2.1 Introduction 2.2 Counting 2.3 Sets of Numbers 2.4 Zero 2.5 Negative Numbers 2.5.1 The Arithmetic of Positive and Negative Numbers 2.6 Observations and Axioms 2.6.1 Commutative Law 2.6.2 Associative Law 2.6.3 Distributive Law 2.7 The Base of a Number System 2.7.1 Background 2.7.2 Octal Numbers 2.7.3 Binary Numbers 2.7.4 Hexadecimal Numbers 2.7.5 Adding Binary Numbers 2.7.6 Subtracting Binary Numbers 2.8 Types of Numbers 2.8.1 Natural Numbers 2.8.2 Integers 2.8.3 Rational Numbers 2.8.4 Irrational Numbers 2.8.5 Real Numbers 2.8.6 Algebraic and Transcendental Numbers 2.8.7 Imaginary Numbers 2.8.8 Complex Numbers 2.8.9 Quaternions and Octonions 2.8.10 Transcendental and Algebraic Numbers 2.9 Prime Numbers 2.9.1 The Fundamental Theorem of Arithmetic 2.9.2 Is 1 a Prime? 2.9.3 Prime Number Distribution 2.9.4 Infinity of Primes 2.9.5 Perfect Numbers 2.9.6 Mersenne Numbers 2.10 Infinity 2.11 Worked Examples 2.11.1 Algebraic Expansion 2.11.2 Binary Subtraction 2.11.3 Complex Numbers 2.11.4 Complex Rotation 2.11.5 Quaternions References 3 Algebra 3.1 Introduction 3.2 Background 3.3 Notation 3.3.1 Solving the Roots of a Quadratic Equation 3.4 Indices 3.4.1 Laws of Indices 3.5 Logarithms 3.6 Further Notation 3.7 Functions 3.7.1 Explicit and Implicit Equations 3.7.2 Function Notation 3.7.3 Intervals 3.7.4 Function Domains and Ranges 3.7.5 Odd and Even Functions 3.7.6 Power Functions 3.8 Worked Examples 3.8.1 Algebraic Manipulation 3.8.2 Solving a Quadratic Equation 3.8.3 Factorising 4 Logic 4.1 Introduction 4.2 Background 4.3 Truth Tables 4.3.1 Logical Connectives 4.4 Logical Premises 4.4.1 Material Equivalence 4.4.2 Implication 4.4.3 Negation 4.4.4 Conjunction 4.4.5 Inclusive Disjunction 4.4.6 Exclusive Disjunction 4.4.7 Idempotence 4.4.8 Commutativity 4.4.9 Associativity 4.4.10 Distributivity 4.4.11 de Morgan\'s Laws 4.4.12 Simplification 4.4.13 Excluded Middle 4.4.14 Contradiction 4.4.15 Double Negation 4.4.16 Implication and Equivalence 4.4.17 Exportation 4.4.18 Contrapositive 4.4.19 Reductio Ad Absurdum 4.4.20 Modus Ponens 4.4.21 Proof by Cases 4.5 Set Theory 4.5.1 Empty Set 4.5.2 Membership and Cardinality of a Set 4.5.3 Subsets, Supersets and the Universal Set 4.5.4 Set Building 4.5.5 Union 4.5.6 Intersection 4.5.7 Relative Complement 4.5.8 Absolute Complement 4.5.9 Power Set 4.6 Worked Examples 4.6.1 Truth Tables 4.6.2 Set Building 4.6.3 Sets 4.6.4 Power Set 5 Combinatorics 5.1 Introduction 5.2 Permutations 5.3 Permutations of Multisets 5.4 Combinations 5.5 Worked Examples 5.5.1 Eight-Permutations of a Multiset 5.5.2 Eight-Permutations of a Multiset 5.5.3 Number of Permutations 5.5.4 Number of Five-Card Hands 5.5.5 Hand Shakes with 100 People 5.5.6 Permutations of MISSISSIPPI 6 Probability 6.1 Introduction 6.2 Definition and Notation 6.2.1 Independent Events 6.2.2 Dependent Events 6.2.3 Mutually Exclusive Events 6.2.4 Inclusive Events 6.2.5 Probability Using Combinations 6.3 Worked Examples 6.3.1 Product of Probabilities 6.3.2 Book Arrangements 6.3.3 Winning a Lottery 6.3.4 Rolling Two Dice 6.3.5 Two Dice Sum to 7 6.3.6 Two Dice Sum to 4 6.3.7 Dealing a Red Ace 6.3.8 Selecting Four Aces in Succession 6.3.9 Selecting Cards 6.3.10 Selecting Four Balls from a Bag 6.3.11 Forming Teams 6.3.12 Dealing Five Cards 7 Modular Arithmetic 7.1 Introduction 7.2 Informal Definition 7.3 Notation 7.4 Congruence 7.5 Negative Numbers 7.6 Arithmetic Operations 7.6.1 Sums of Numbers 7.6.2 Products 7.6.3 Multiplying by a Constant 7.6.4 Congruent Pairs 7.6.5 Multiplicative Inverse 7.6.6 Modulo a Prime 7.6.7 Fermat\'s Little Theorem 7.7 Applications of Modular Arithmetic 7.7.1 ISBN Parity Check 7.7.2 IBAN Check Digits 7.8 Worked Examples 7.8.1 Negative Numbers 7.8.2 Sums of Numbers 7.8.3 Remainders of Products 7.8.4 Multiplicative Inverse 7.8.5 Product Table for Modulo 13 7.8.6 ISBN Check Digit References 8 Trigonometry 8.1 Introduction 8.2 Background 8.3 Units of Angular Measurement 8.4 The Trigonometric Ratios 8.4.1 Domains and Ranges 8.5 Inverse Trigonometric Ratios 8.6 Trigonometric Identities 8.7 The Sine Rule 8.8 The Cosine Rule 8.9 Compound-Angle Identities 8.9.1 Double-Angle Identities 8.9.2 Multiple-Angle Identities 8.9.3 Half-Angle Identities 8.10 Perimeter Relationships 9 Coordinate Systems 9.1 Introduction 9.2 Background 9.3 The Cartesian Plane 9.4 Function Graphs 9.5 Shape Representation 9.5.1 2D Polygons 9.5.2 Areas of Shapes 9.6 Theorem of Pythagoras in 2D 9.7 3D Cartesian Coordinates 9.7.1 Theorem of Pythagoras in 3D 9.8 Polar Coordinates 9.9 Spherical Polar Coordinates 9.10 Cylindrical Coordinates 9.11 Barycentric Coordinates 9.12 Homogeneous Coordinates 9.13 Worked Examples 9.13.1 Area of a Shape 9.13.2 Distance Between Two Points 9.13.3 Polar Coordinates 9.13.4 Spherical Polar Coordinates 9.13.5 Cylindrical Coordinates 9.13.6 Barycentric Coordinates Reference 10 Determinants 10.1 Introduction 10.2 Background 10.3 Linear Equations with Two Variables 10.4 Linear Equations with Three Variables 10.4.1 Sarrus\'s Rule 10.5 Mathematical Notation 10.5.1 Matrix 10.5.2 Order of a Determinant 10.5.3 Value of a Determinant 10.5.4 Properties of Determinants 10.6 Worked Examples 10.6.1 Determinant Expansion 10.6.2 Complex Determinant 10.6.3 Simple Expansion 10.6.4 Simultaneous Equations 11 Vectors 11.1 Introduction 11.2 Background 11.3 2D Vectors 11.3.1 Vector Notation 11.3.2 Graphical Representation of Vectors 11.3.3 Magnitude of a Vector 11.4 3D Vectors 11.4.1 Vector Manipulation 11.4.2 Scaling a Vector 11.4.3 Vector Addition and Subtraction 11.4.4 Position Vectors 11.4.5 Unit Vectors 11.4.6 Cartesian Vectors 11.4.7 Products 11.4.8 Scalar Product 11.4.9 The Vector Product 11.4.10 The Right-Hand Rule 11.5 Deriving a Unit Normal Vector for a Triangle 11.6 Surface Areas 11.6.1 Calculating 2D Areas 11.7 Worked Examples 11.7.1 Position Vector 11.7.2 Unit Vector 11.7.3 Vector Magnitude 11.7.4 Angle Between Two Vectors 11.7.5 Vector Product Reference 12 Complex Numbers 12.1 Introduction 12.2 Representing Complex Numbers 12.2.1 Complex Numbers 12.2.2 Real and Imaginary Parts 12.2.3 The Complex Plane 12.3 Complex Algebra 12.3.1 Algebraic Laws 12.3.2 Complex Conjugate 12.3.3 Complex Division 12.3.4 Powers of i 12.3.5 Rotational Qualities of i 12.3.6 Modulus and Argument 12.3.7 Complex Norm 12.3.8 Complex Inverse 12.3.9 Complex Exponentials 12.3.10 de Moivre\'s Theorem 12.3.11 nth Root of Unity 12.3.12 nth Roots of a Complex Number 12.3.13 Logarithm of a Complex Number 12.3.14 Raising a Complex Number to a Complex Power 12.3.15 Visualising Simple Complex Functions 12.3.16 The Hyperbolic Functions 12.4 Summary 12.5 Worked Examples 12.5.1 Complex Addition 12.5.2 Complex Products 12.5.3 Complex Division 12.5.4 Complex Rotation 12.5.5 Polar Notation 12.5.6 Real and Imaginary Parts 12.5.7 Magnitude of a Complex Number 12.5.8 Complex Norm 12.5.9 Complex Inverse 12.5.10 de Moivre\'s Theorem 12.5.11 nth Root of Unity 12.5.12 Roots of a Complex Number 12.5.13 Logarithm of a Complex Number 12.5.14 Raising a Number to a Complex Power References 13 Matrices 13.1 Introduction 13.2 Geometric Transforms 13.3 Transforms and Matrices 13.4 Matrix Notation 13.4.1 Matrix Dimension or Order 13.4.2 Square Matrix 13.4.3 Column Vector 13.4.4 Row Vector 13.4.5 Null Matrix 13.4.6 Unit Matrix 13.4.7 Trace 13.4.8 Determinant of a Matrix 13.4.9 Transpose 13.4.10 Symmetric Matrix 13.4.11 Antisymmetric Matrix 13.5 Matrix Addition and Subtraction 13.5.1 Scalar Multiplication 13.6 Matrix Products 13.6.1 Row and Column Vectors 13.6.2 Row Vector and a Matrix 13.6.3 Matrix and a Column Vector 13.6.4 Square Matrices 13.6.5 Rectangular Matrices 13.7 Inverse Matrix 13.7.1 Inverting a Pair of Matrices 13.8 Orthogonal Matrix 13.9 Diagonal Matrix 13.10 Worked Examples 13.10.1 Matrix Inversion 13.10.2 Identity Matrix 13.10.3 Solving Two Equations Using Matrices 13.10.4 Solving Three Equations Using Matrices 13.10.5 Solving Two Complex Equations 13.10.6 Solving Three Complex Equations 13.10.7 Solving Two Complex Equations 13.10.8 Solving Three Complex Equations 14 Geometric Matrix Transforms 14.1 Introduction 14.2 Matrix Transforms 14.2.1 2D Translation 14.2.2 2D Scaling 14.2.3 2D Reflections 14.2.4 2D Shearing 14.2.5 2D Rotation 14.2.6 2D Scaling 14.2.7 2D Reflection 14.2.8 2D Rotation About an Arbitrary Point 14.3 3D Transforms 14.3.1 3D Translation 14.3.2 3D Scaling 14.3.3 3D Rotation 14.3.4 Rotating About an Axis 14.3.5 3D Reflections 14.4 Rotating a Point About an Arbitrary Axis 14.4.1 Matrices 14.5 Determinant of a Transform 14.6 Perspective Projection 14.7 Worked Examples 14.7.1 2D Scale and Translate 14.7.2 2D Rotation 14.7.3 Determinant of the Rotate Transform 14.7.4 Determinant of the Shear Transform 14.7.5 Yaw, Pitch and Roll Transforms 14.7.6 Rotation About an Arbitrary Axis 14.7.7 3D Rotation Transform Matrix 14.7.8 Perspective Projection 15 Calculus: Derivatives 15.1 Introduction 15.2 Background 15.3 Small Numerical Quantities 15.4 Equations and Limits 15.4.1 Quadratic Function 15.4.2 Cubic Equation 15.4.3 Functions and Limits 15.4.4 Graphical Interpretation of the Derivative 15.4.5 Derivatives and Differentials 15.4.6 Integration and Antiderivatives 15.5 Function Types 15.6 Differentiating Groups of Functions 15.6.1 Sums of Functions 15.6.2 Function of a Function 15.6.3 Function Products 15.6.4 Function Quotients 15.7 Differentiating Implicit Functions 15.8 Differentiating Exponential and Logarithmic Functions 15.8.1 Exponential Functions 15.8.2 Logarithmic Functions 15.9 Differentiating Trigonometric Functions 15.9.1 Differentiating tan 15.9.2 Differentiating csc 15.9.3 Differentiating sec 15.9.4 Differentiating cot 15.9.5 Differentiating arcsin, arccos and arctan 15.9.6 Differentiating arccsc, arcsec and arccot 15.10 Differentiating Hyperbolic Functions 15.10.1 Differentiating sinh, cosh and tanh 15.11 Higher Derivatives 15.12 Higher Derivatives of a Polynomial 15.13 Identifying a Local Maximum or Minimum 15.14 Partial Derivatives 15.14.1 Visualising Partial Derivatives 15.14.2 Mixed Partial Derivatives 15.15 Chain Rule 15.16 Total Derivative 15.17 Power Series 15.18 Worked Examples 15.18.1 Antiderivative 1 15.18.2 Antiderivative 2 15.18.3 Differentiating Sums of Functions 15.18.4 Differentiating a Function Product 15.18.5 Differentiating an Implicit Function 15.18.6 Differentiating a General Implicit Function 15.18.7 Local Maximum or Minimum 15.18.8 Partial Derivatives 15.18.9 Mixed Partial Derivative 1 15.18.10 Mixed Partial Derivative 2 15.18.11 Total Derivative 16 Calculus: Integration 16.1 Introduction 16.2 Indefinite Integral 16.3 Integration Techniques 16.3.1 Continuous Functions 16.3.2 Difficult Functions 16.4 Trigonometric Identities 16.4.1 Exponent Notation 16.4.2 Completing the Square 16.4.3 The Integrand Contains a Derivative 16.4.4 Converting the Integrand into a Series of Fractions 16.4.5 Integration by Parts 16.4.6 Integration by Substitution 16.4.7 Partial Fractions 16.5 Area Under a Graph 16.6 Calculating Areas 16.7 Positive and Negative Areas 16.8 Area Between Two Functions 16.9 Areas with the y-Axis 16.10 Area with Parametric Functions 16.11 The Riemann Sum 16.12 Worked Examples 16.12.1 Integrating a Function Containing Its Own Derivative 16.12.2 Dividing an Integral into Several Integrals 16.12.3 Integrating by Parts 1 16.12.4 Integrating by Parts 2 16.12.5 Integrating by Substitution 1 16.12.6 Integrating by Substitution 2 16.12.7 Integrating by Substitution 3 16.12.8 Integrating with Partial Fractions Appendix A Limit of (sinθ)/θ Appendix B Integrating cosnθ Index