دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.]
نویسندگان: John Vince
سری:
ISBN (شابک) : 3031174100, 9783031174117
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 532
[519]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Foundation Mathematics for Computer Science: A Visual Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات پایه برای علوم کامپیوتر: یک رویکرد بصری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در این ویرایش سوم از بنیاد ریاضیات برای علوم کامپیوتر، جان وینس ویرایش دوم را بررسی و ویرایش کرده و فصلهایی در مورد سیستمهای شمارش، مساحت و حجم اضافه کرده است. این موضوعات مکمل فصول موجود در ریاضیات دیداری، اعداد، جبر، منطق، ترکیبات، احتمال، محاسبات مدولار، مثلثات، سیستم های مختصات، تعیین کننده ها، بردارها، اعداد مختلط، ماتریس ها، تبدیل های ماتریس هندسی، حساب دیفرانسیل و انتگرال هستند. در طول این سفر، نویسنده به موضوعات باطنی بیشتری مانند ربعها، اکتونیونها، جبر گراسمن، مختصات بری مرکزی، مجموعههای متعدی و اعداد اول میپردازد. جان وینس طیف وسیعی از موضوعات ریاضی را توصیف می کند که پایه محکمی را برای دوره کارشناسی در علوم کامپیوتر فراهم می کند، که با بررسی سیستم های اعداد و ارتباط آنها با رایانه های دیجیتال شروع می شود و با محاسبه مساحت و حجم با استفاده از حساب دیفرانسیل و انتگرال پایان می یابد. خوانندگان متوجه خواهند شد که رویکرد بصری نویسنده باید درک آنها را در مورد اینکه چرا ساختارهای ریاضی خاصی وجود دارند، همراه با نحوه استفاده از آنها در برنامه های کاربردی دنیای واقعی، بهبود بخشد. این نسخه سوم شامل تصاویر جدید و تمام رنگی برای روشن شدن توصیفات ریاضی است و در برخی موارد، معادلات نیز رنگی هستند تا الگوهای جبری حیاتی را نشان دهند. نمونه های کار شده متعدد به تحکیم درک مفاهیم انتزاعی ریاضی کمک می کند. این که آیا قصد دارید حرفه ای در برنامه نویسی، تجسم علمی، هوش مصنوعی، طراحی سیستم ها، یا محاسبات بلادرنگ دنبال کنید، باید سبک ادبی نویسنده را به شکلی شفاف و جذاب بیابید و شما را برای متون پیشرفته تر آماده کنید.
In this third edition of Foundation Mathematics for Computer Science, John Vince has reviewed and edited the second edition, and added chapters on systems of counting, area and volume. These subjects complement the existing chapters on visual mathematics, numbers, algebra, logic, combinatorics, probability, modular arithmetic, trigonometry, coordinate systems, determinants, vectors, complex numbers, matrices, geometric matrix transforms, differential and integral calculus. During this journey, the author touches upon more esoteric topics such as quaternions, octonions, Grassmann algebra, Barrycentric coordinates, transfinite sets and prime numbers. John Vince describes a range of mathematical topics that provide a solid foundation for an undergraduate course in computer science, starting with a review of number systems and their relevance to digital computers, and finishing with calculating area and volume using calculus. Readers will find that the author’s visual approach should greatly improve their understanding as to why certain mathematical structures exist, together with how they are used in real-world applications. This third edition includes new, full-colour illustrations to clarify the mathematical descriptions, and in some cases, equations are also coloured to reveal vital algebraic patterns. The numerous worked examples will help consolidate the understanding of abstract mathematical concepts. Whether you intend to pursue a career in programming, scientific visualisation, artificial intelligence, systems design, or real-time computing, you should find the author’s literary style refreshingly lucid and engaging, and prepare you for more advanced texts.
Preface Contents 1 Visual Mathematics 1.1 Introduction 1.2 Visual Brains Versus Analytic Brains 1.3 Learning Mathematics 1.4 What Makes Mathematics Difficult? 1.5 Does Mathematics Exist Outside Our Brains? 1.6 Symbols and Notation Reference 2 Numbers 2.1 Introduction 2.2 Counting 2.3 Sets of Numbers 2.4 Zero 2.5 Negative Numbers 2.5.1 The Arithmetic of Positive and Negative Numbers 2.6 Observations and Axioms 2.6.1 Commutative Law 2.6.2 Associative Law 2.6.3 Distributive Law 2.7 Types of Numbers 2.7.1 Natural Numbers 2.7.2 Integers 2.7.3 Rational Numbers 2.7.4 Irrational Numbers 2.7.5 Real Numbers 2.7.6 Algebraic and Transcendental Numbers 2.7.7 Imaginary Numbers 2.7.8 Complex Numbers 2.7.9 Quaternions and Octonions 2.8 Prime Numbers 2.8.1 The Fundamental Theorem of Arithmetic 2.8.2 Is 1 a Prime? 2.8.3 The Goldbach Conjecture 2.8.4 Prime Number Distribution 2.8.5 Infinity of Primes 2.8.6 Mersenne Numbers 2.9 Perfect Numbers 2.10 Triangular Numbers 2.11 Infinity 2.12 Worked Examples 2.12.1 Algebraic Expansion 2.12.2 Complex Numbers 2.12.3 Quaternions References 3 Systems of Counting 3.1 Introduction 3.2 Decimal Positional System 3.2.1 Background 3.2.2 Binary Numbers 3.2.3 Octal Numbers 3.2.4 Hexadecimal Numbers 3.3 Converting Decimal to Binary, Octal and Hexadecimal 3.3.1 Converting Decimal to Binary 3.3.2 Converting Decimal to Octal 3.3.3 Converting Decimal to Hexadecimal 3.4 Converting Between Binary and Octal Numbers 3.5 Converting Between Binary and Hexadecimal Numbers 3.6 Adding and Subtracting Binary Numbers 3.6.1 Adding Binary Numbers 3.6.2 Subtracting Binary Numbers Using Two's Complement 3.7 Adding and Subtracting Decimal Numbers 3.7.1 Adding Decimal Numbers 3.7.2 Subtracting Decimal Numbers Using Ten's Complement 3.8 Adding and Subtracting Octal Numbers 3.8.1 Adding Octal Numbers 3.8.2 Subtracting Octal Numbers Using Eight's Complement 3.9 Summary 3.10 Worked Examples 3.10.1 Convert a Decimal Number into Binary 3.10.2 Convert a Decimal Number into Binary Using an Algorithm 3.10.3 Convert a Binary Number into Decimal 3.10.4 Convert a Binary Number into Octal 3.10.5 Convert an Octal Number into Binary 3.10.6 Convert an Octal Number into Hexadecimal 3.10.7 Convert a Hexadecimal Number into Octal 3.10.8 Convert a Decimal Number into Octal 3.10.9 Convert a Decimal Number into Octal Using an Algorithm 3.10.10 Convert a Decimal Number into Hexadecimal 3.10.11 Add Binary Numbers 3.10.12 Subtract Binary Numbers 3.10.13 Add Octal Numbers 3.10.14 Subtract Octal Numbers 3.10.15 Add Hexadecimal Numbers 4 Algebra 4.1 Introduction 4.2 Background 4.3 Notation 4.3.1 Solving the Roots of a Quadratic Equation 4.4 Indices 4.4.1 Laws of Indices 4.5 Logarithms 4.6 Further Notation 4.7 Functions 4.7.1 Explicit and Implicit Equations 4.7.2 Function Notation 4.7.3 Intervals 4.7.4 Function Domains and Ranges 4.7.5 Odd and Even Functions 4.7.6 Power Functions 4.8 Series 4.9 Binomial Theorem 4.10 Summary 4.11 Worked Examples 4.11.1 Algebraic Manipulation 4.11.2 Solving a Quadratic Equation 4.11.3 Factorising 4.11.4 Binomial Theorem References 5 Logic 5.1 Introduction 5.2 Background 5.3 Truth Tables 5.3.1 Logical Connectives 5.4 Logical Premises 5.4.1 Material Equivalence 5.4.2 Implication 5.4.3 Negation 5.4.4 Conjunction 5.4.5 Inclusive Disjunction 5.4.6 Exclusive Disjunction 5.4.7 Idempotence 5.4.8 Commutativity 5.4.9 Associativity 5.4.10 Distributivity 5.4.11 de Morgan's Laws 5.4.12 Simplification 5.4.13 Excluded Middle 5.4.14 Contradiction 5.4.15 Double Negation 5.4.16 Implication and Equivalence 5.4.17 Exportation 5.4.18 Contrapositive 5.4.19 Reductio Ad Absurdum 5.4.20 Modus Ponens 5.4.21 Proof by Cases 5.5 Set Theory 5.5.1 Empty Set 5.5.2 Membership and Cardinality of a Set 5.5.3 Subsets, Supersets and the Universal Set 5.5.4 Set Building 5.5.5 Union 5.5.6 Intersection 5.5.7 Relative Complement 5.5.8 Absolute Complement 5.5.9 Power Set 5.6 Worked Examples 5.6.1 Truth Tables 5.6.2 Set Building 5.6.3 Sets 5.6.4 Power Set 6 Combinatorics 6.1 Introduction 6.2 Permutations 6.3 Permutations of Multisets 6.4 Combinations 6.5 Worked Examples 6.5.1 Eight-Permutations of a Multiset 6.5.2 Eight-Permutations of a Multiset 6.5.3 Number of Permutations 6.5.4 Number of Five-Card Hands 6.5.5 Hand Shakes with 100 People 6.5.6 Permutations of MISSISSIPPI 7 Probability 7.1 Introduction 7.2 Definition and Notation 7.2.1 Independent Events 7.2.2 Dependent Events 7.2.3 Mutually Exclusive Events 7.2.4 Inclusive Events 7.2.5 Probability Using Combinations 7.3 Worked Examples 7.3.1 Product of Probabilities 7.3.2 Book Arrangements 7.3.3 Winning a Lottery 7.3.4 Rolling Two Dice 7.3.5 Two Dice Sum to 7 7.3.6 Two Dice Sum to 4 7.3.7 Dealing a Red Ace 7.3.8 Selecting Four Aces in Succession 7.3.9 Selecting Cards 7.3.10 Selecting Four Balls from a Bag 7.3.11 Forming Teams 7.3.12 Dealing Five Cards 8 Modular Arithmetic 8.1 Introduction 8.2 Informal Definition 8.3 Notation 8.4 Congruence 8.5 Negative Numbers 8.6 Arithmetic Operations 8.6.1 Sums of Numbers 8.6.2 Products 8.6.3 Multiplying by a Constant 8.6.4 Congruent Pairs 8.6.5 Multiplicative Inverse 8.6.6 Modulo a Prime 8.6.7 Fermat's Little Theorem 8.7 Applications of Modular Arithmetic 8.7.1 ISBN Parity Check 8.7.2 IBAN Check Digits 8.8 Worked Examples 8.8.1 Negative Numbers 8.8.2 Sums of Numbers 8.8.3 Remainders of Products 8.8.4 Multiplicative Inverse 8.8.5 Product Table for Modulo 13 8.8.6 ISBN Check Digit Reference 9 Trigonometry 9.1 Introduction 9.2 Background 9.3 Units of Angular Measurement 9.4 The Trigonometric Ratios 9.4.1 Domains and Ranges 9.5 Inverse Trigonometric Ratios 9.6 Trigonometric Identities 9.7 The Sine Rule 9.8 The Cosine Rule 9.9 Compound-Angle Identities 9.9.1 Double-Angle Identities 9.9.2 Multiple-Angle Identities 9.9.3 Half-Angle Identities 9.10 Perimeter Relationships 9.11 Worked Examples 9.11.1 Degrees to Radians 9.11.2 Sine Rule 9.11.3 Cosine Rule 9.11.4 Compound Angle 9.11.5 Double-Angle Identity 9.11.6 Perimeter Relationship 10 Coordinate Systems 10.1 Introduction 10.2 Background 10.3 The Cartesian Plane 10.4 Function Graphs 10.5 Shape Representation 10.5.1 2D Polygons 10.5.2 Areas of Shapes 10.6 Theorem of Pythagoras in 2D 10.6.1 Pythagorean Triples 10.7 3D Cartesian Coordinates 10.7.1 Theorem of Pythagoras in 3D 10.8 Polar Coordinates 10.9 Spherical Polar Coordinates 10.10 Cylindrical Coordinates 10.11 Barycentric Coordinates 10.12 Homogeneous Coordinates 10.13 Worked Examples 10.13.1 Area of a Shape 10.13.2 Distance Between Two Points 10.13.3 Polar Coordinates 10.13.4 Spherical Polar Coordinates 10.13.5 Cylindrical Coordinates 10.13.6 Barycentric Coordinates Reference 11 Determinants 11.1 Introduction 11.2 Background 11.3 Linear Equations with Two Variables 11.4 Linear Equations with Three Variables 11.4.1 Sarrus's Rule 11.5 Mathematical Notation 11.5.1 Matrix 11.5.2 Order of a Determinant 11.5.3 Value of a Determinant 11.5.4 Properties of Determinants 11.6 Worked Examples 11.6.1 Determinant Expansion 11.6.2 Complex Determinant 11.6.3 Simple Expansion 11.6.4 Simultaneous Equations 12 Vectors 12.1 Introduction 12.2 Background 12.3 2D Vectors 12.3.1 Vector Notation 12.3.2 Graphical Representation of Vectors 12.3.3 Magnitude of a Vector 12.4 3D Vectors 12.4.1 Vector Manipulation 12.4.2 Scaling a Vector 12.4.3 Vector Addition and Subtraction 12.4.4 Position Vectors 12.4.5 Unit Vectors 12.4.6 Cartesian Vectors 12.4.7 Products 12.4.8 Scalar Product 12.4.9 The Dot Product in Lighting Calculations 12.4.10 The Scalar Product in Back-Face Detection 12.4.11 The Vector Product 12.4.12 The Right-Hand Rule 12.5 Deriving a Unit Normal Vector for a Triangle 12.6 Surface Areas 12.6.1 Calculating 2D Areas 12.7 Summary 12.8 Worked Examples 12.8.1 Position Vector 12.8.2 Unit Vector 12.8.3 Vector Magnitude 12.8.4 Angle Between Two Vectors 12.8.5 Vector Product References 13 Complex Numbers 13.1 Introduction 13.2 Representing Complex Numbers 13.2.1 Complex Numbers 13.2.2 Real and Imaginary Parts 13.2.3 The Complex Plane 13.3 Complex Algebra 13.3.1 Algebraic Laws 13.3.2 Complex Conjugate 13.3.3 Complex Division 13.3.4 Powers of i 13.3.5 Rotational Qualities of i 13.3.6 Modulus and Argument 13.3.7 Complex Norm 13.3.8 Complex Inverse 13.3.9 Complex Exponentials 13.3.10 de Moivre's Theorem 13.3.11 nth Root of Unity 13.3.12 nth Roots of a Complex Number 13.3.13 Logarithm of a Complex Number 13.3.14 Raising a Complex Number to a Complex Power 13.3.15 Visualising Simple Complex Functions 13.3.16 The Hyperbolic Functions 13.4 Summary 13.5 Worked Examples 13.5.1 Complex Addition 13.5.2 Complex Products 13.5.3 Complex Division 13.5.4 Complex Rotation 13.5.5 Polar Notation 13.5.6 Real and Imaginary Parts 13.5.7 Magnitude of a Complex Number 13.5.8 Complex Norm 13.5.9 Complex Inverse 13.5.10 de Moivre's Theorem 13.5.11 nth Root of Unity 13.5.12 Roots of a Complex Number 13.5.13 Logarithm of a Complex Number 13.5.14 Raising a Number to a Complex Power References 14 Matrices 14.1 Introduction 14.2 Geometric Transforms 14.3 Transforms and Matrices 14.4 Matrix Notation 14.4.1 Matrix Dimension or Order 14.4.2 Square Matrix 14.4.3 Column Vector 14.4.4 Row Vector 14.4.5 Null Matrix 14.4.6 Unit Matrix 14.4.7 Trace 14.4.8 Determinant of a Matrix 14.4.9 Transpose 14.4.10 Symmetric Matrix 14.4.11 Antisymmetric Matrix 14.5 Matrix Addition and Subtraction 14.5.1 Scalar Multiplication 14.6 Matrix Products 14.6.1 Row and Column Vectors 14.6.2 Row Vector and a Matrix 14.6.3 Matrix and a Column Vector 14.6.4 Square Matrices 14.6.5 Rectangular Matrices 14.7 Inverse Matrix 14.7.1 Inverting a Pair of Matrices 14.8 Orthogonal Matrix 14.9 Diagonal Matrix 14.10 Worked Examples 14.10.1 Matrix Inversion 14.10.2 Identity Matrix 14.10.3 Solving Two Equations Using Matrices 14.10.4 Solving Three Equations Using Matrices 14.10.5 Solving Two Complex Equations 14.10.6 Solving Three Complex Equations 14.10.7 Solving Two Complex Equations 14.10.8 Solving Three Complex Equations 15 Geometric Matrix Transforms 15.1 Introduction 15.2 Matrix Transforms 15.2.1 2D Translation 15.2.2 2D Scaling 15.2.3 2D Reflections 15.2.4 2D Shearing 15.2.5 2D Rotation 15.2.6 2D Scaling 15.2.7 2D Reflection 15.2.8 2D Rotation About an Arbitrary Point 15.3 3D Transforms 15.3.1 3D Translation 15.3.2 3D Scaling 15.3.3 3D Rotation 15.3.4 Rotating About an Axis 15.3.5 3D Reflections 15.4 Rotating a Point About an Arbitrary Axis 15.4.1 Matrices 15.5 Determinant of a Transform 15.6 Perspective Projection 15.7 Worked Examples 15.7.1 2D Scale and Translate 15.7.2 2D Rotation 15.7.3 Determinant of the Rotate Transform 15.7.4 Determinant of the Shear Transform 15.7.5 Yaw, Pitch and Roll Transforms 15.7.6 Rotation About an Arbitrary Axis 15.7.7 3D Rotation Transform Matrix 15.7.8 Perspective Projection 16 Calculus: Derivatives 16.1 Introduction 16.2 Background 16.3 Small Numerical Quantities 16.4 Equations and Limits 16.4.1 Quadratic Function 16.4.2 Cubic Equation 16.4.3 Functions and Limits 16.4.4 Graphical Interpretation of the Derivative 16.4.5 Derivatives and Differentials 16.4.6 Integration and Antiderivatives 16.5 Function Types 16.6 Differentiating Groups of Functions 16.6.1 Sums of Functions 16.6.2 Function of a Function 16.6.3 Function Products 16.6.4 Function Quotients 16.7 Differentiating Implicit Functions 16.8 Differentiating Exponential and Logarithmic Functions 16.8.1 Exponential Functions 16.8.2 Logarithmic Functions 16.9 Differentiating Trigonometric Functions 16.9.1 Differentiating tan 16.9.2 Differentiating csc 16.9.3 Differentiating sec 16.9.4 Differentiating cot 16.9.5 Differentiating arcsin, arccos and arctan 16.9.6 Differentiating arccsc, arcsec and arccot 16.10 Differentiating Hyperbolic Functions 16.10.1 Differentiating sinh, cosh and tanh 16.11 Higher Derivatives 16.12 Higher Derivatives of a Polynomial 16.13 Identifying a Local Maximum or Minimum 16.14 Partial Derivatives 16.14.1 Visualising Partial Derivatives 16.14.2 Mixed Partial Derivatives 16.15 Chain Rule 16.16 Total Derivative 16.17 Power Series 16.18 Worked Examples 16.18.1 Antiderivative 1 16.18.2 Antiderivative 2 16.18.3 Differentiating Sums of Functions 16.18.4 Differentiating a Function Product 16.18.5 Differentiating an Implicit Function 16.18.6 Differentiating a General Implicit Function 16.18.7 Local Maximum or Minimum 16.18.8 Partial Derivatives 16.18.9 Mixed Partial Derivative 1 16.18.10 Mixed Partial Derivative 2 16.18.11 Total Derivative 17 Calculus: Integration 17.1 Introduction 17.2 Indefinite Integral 17.3 Integration Techniques 17.3.1 Continuous Functions 17.3.2 Difficult Functions 17.4 Trigonometric Identities 17.4.1 Exponent Notation 17.4.2 Completing the Square 17.4.3 The Integrand Contains a Derivative 17.4.4 Converting the Integrand into a Series of Fractions 17.4.5 Integration by Parts 17.4.6 Integration by Substitution 17.4.7 Partial Fractions 17.5 Summary 17.6 Worked Examples 17.6.1 Integrating a Function Containing its Own Derivative 17.6.2 Dividing an Integral into Several Integrals 17.6.3 Integrating by Parts 1 17.6.4 Integrating by Parts 2 17.6.5 Integrating by Substitution 1 17.6.6 Integrating by Substitution 2 17.6.7 Integrating by Substitution 3 17.6.8 Integrating with Partial Fractions 18 Area 18.1 Introduction 18.2 Area Under a Graph 18.3 Calculating Areas 18.4 Positive and Negative Areas 18.5 Area Between Two Functions 18.6 Areas with the y-Axis 18.7 Area with Parametric Functions 18.8 The Riemann Sum 18.9 Surface of Revolution 18.9.1 Surface Area of a Cylinder 18.9.2 Surface Area of a Right Cone 18.9.3 Surface Area of a Sphere 18.9.4 Surface Area of a Paraboloid 18.10 Surface Area Using Parametric Functions 18.11 Double Integrals 18.12 Jacobians 18.12.1 1D Jacobian 18.12.2 2D Jacobian 18.12.3 3D Jacobian 18.13 Double Integrals for Calculating Area 18.14 Summary 18.14.1 Summary of Formulae 19 Volume 19.1 Introduction 19.2 Solid of Revolution: Disks 19.2.1 Volume of a Cylinder 19.2.2 Volume of a Right Cone 19.2.3 Volume of a Right Conical Frustum 19.2.4 Volume of a Sphere 19.2.5 Volume of an Ellipsoid 19.2.6 Volume of a Paraboloid 19.3 Solid of Revolution: Shells 19.3.1 Volume of a Cylinder 19.3.2 Volume of a Right Cone 19.3.3 Volume of a Sphere 19.3.4 Volume of a Paraboloid 19.4 Volumes with Double Integrals 19.4.1 Objects with a Rectangular Base 19.4.2 Rectangular Box 19.4.3 Rectangular Prism 19.4.4 Curved Top 19.4.5 Objects with a Circular Base 19.4.6 Cylinder 19.4.7 Truncated Cylinder 19.5 Volumes with Triple Integrals 19.5.1 Rectangular Box 19.5.2 Volume of a Cylinder 19.5.3 Volume of a Sphere 19.5.4 Volume of a Cone 19.6 Summary 19.6.1 Summary of Formulae Appendix A Limit of (sinθ)/θ Appendix B Integrating cosnθ Index