ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Forensic Geoscience: Principles, Techniques And Applications (Geological Society Special Publication)

دانلود کتاب علوم پزشکی قانونی پزشکی قانونی: اصول ، تکنیک ها و برنامه های کاربردی (انتشار ویژه انجمن زمین شناسی)

Forensic Geoscience: Principles, Techniques And Applications (Geological Society Special Publication)

مشخصات کتاب

Forensic Geoscience: Principles, Techniques And Applications (Geological Society Special Publication)

دسته بندی: ریاضیات کاربردی
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1862391610, 9781429413138 
ناشر:  
سال نشر: 2004 
تعداد صفحات: 327 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 36 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Forensic Geoscience: Principles, Techniques And Applications (Geological Society Special Publication) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب علوم پزشکی قانونی پزشکی قانونی: اصول ، تکنیک ها و برنامه های کاربردی (انتشار ویژه انجمن زمین شناسی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب علوم پزشکی قانونی پزشکی قانونی: اصول ، تکنیک ها و برنامه های کاربردی (انتشار ویژه انجمن زمین شناسی)

زمین شناسی قانونی یک زیررشته مهم فزاینده در علوم زمین و علم پزشکی قانونی است. اگرچه مواد معدنی، خاک، گرد و غبار و قطعات سنگ برای سال‌ها به عنوان شواهد ردیابی پزشکی قانونی مورد استفاده قرار گرفته‌اند، پتانسیل واقعی آنها تنها در ده سال گذشته شناسایی شده است. پلیس و سایر ارگان های تحقیقاتی مایلند چنین پیشرفت هایی را در مبارزه با جرم تشویق کنند، به ویژه از آنجایی که بسیاری از مجرمان سطح بالایی از آگاهی پزشکی قانونی را در مورد شواهدی مانند اثر انگشت، خون و سایر مایعات بدن نشان می دهند. مقالات این جلد برخی از اصول، تکنیک‌ها و کاربردهای اصلی در علم زمین پزشکی قانونی کنونی را نشان می‌دهد که تحقیقات و موارد موردی را در بریتانیا و در سطح بین‌المللی پوشش می‌دهد. تکنیک های توصیف شده طیف وسیعی از تحقیقات ژئوفیزیک میدانی در مقیاس ماکرو تا مطالعات آزمایشگاهی در مقیاس میکرو در مورد خواص شیمیایی و بافتی ذرات منفرد را شامل می شود. علاوه بر کاربردهای پزشکی قانونی، بسیاری از این تکنیک ها کاربرد گسترده ای در تحقیقات زمین شناسی، ژئومورفولوژی، علم خاک و باستان شناسی دارند. همچنین موجود است: Communicating Environmental Geoscience - انتشار ویژه شماره 305 - ISBN 1862392609 ژئومواد در میراث فرهنگی - انتشارات ویژه شماره 257 - ISBN 978-1-86239-195-6 انجمن زمین شناسی لندن، قدیمی ترین انجمن زمین شناسی لندن است. انجمن زمین شناسی در جهان، و یکی از بزرگترین ناشران در علوم زمین. بسیاری از زمینه هایی که ما در آنها منتشر می کنیم عبارتند از: - زمین شناسی نفت - زمین ساخت، زمین شناسی ساختاری و ژئودینامیک - چینه شناسی، رسوب شناسی و دیرینه شناسی - آتشفشان شناسی، مطالعات ماگمایی و ژئوشیمی - سنجش از دور - تاریخچه زمین شناسی - راهنمای زمین شناسی منطقه ای


توضیحاتی درمورد کتاب به خارجی

Forensic geoscience is an increasingly important sub-discipline within geoscience and forensic science. Although minerals, soils, dusts and rock fragments have been used as forensic trace evidence for many years, their true potential has only begun to be recognized in the last ten years or so. The police and other investigative bodies are keen to encourage such developments in the fight against crime, particularly since many criminals show a high level of forensic awareness with regard to evidence such as fingerprints, blood and other body fluids. The papers in this volume illustrate some of the main principles, techniques and applications in current forensic geoscience, covering research and casework in the UK and internationally. The techniques described range from macro-scale field geophysical investigations to micro-scale laboratory studies of the chemical and textural properties of individual particles. In addition to forensic applications, many of these techniques have broad utility in geological, geomorphological, soil science and archaeological research. Also available: Communicating Environmental Geoscience - Special Publication no 305 - ISBN 1862392609 Geomaterials in cultural heritage - Special Publication No 257 - ISBN 978-1-86239-195-6 The Geological Society of LondonFounded in 1807, the Geological Society of London is the oldest geological society in the world, and one of the largest publishers in the Earth sciences.The Society publishes a wide range of high-quality peer-reviewed titles for academics and professionals working in the geosciences, and enjoys an enviable international reputation for the quality of its work.The many areas in which we publish in include:-Petroleum geology-Tectonics, structural geology and geodynamics-Stratigraphy, sedimentology and paleontology-Volcanology, magmatic studies and geochemistry-Remote sensing-History of geology-Regional geology guides



فهرست مطالب

Contents......Page 6
Preface......Page 8
Forensic geoscience: introduction and overview......Page 10
Fig. 1. The relationship of forensic geoscience to some other disciplines and subdisciplines.......Page 11
Forensic geology: yesterday, today and tomorrow......Page 16
Geophysical techniques for forensic investigation......Page 20
Fig. 1. Detection probability example. After Benson and Yuhr (1996).......Page 22
Fig. 2. GPR profile over buried graves.......Page 25
Fig. 3. Sketch map of survey site, Saddleworth Moor, West Yorkshire.......Page 26
Fig. 4. Photograph showing field operator carrying out inductive conductivity measurements over .........Page 28
Table 1. Summary of geophysical survey methods. After Kearey and Brooks (1994).......Page 21
Geophysics and burials: field experience and software development......Page 30
Fig. 1. GPR at Mt Vernon: the SIR2000 with a 400 MHz .........Page 33
Fig. 2. Data collected at Wiggins Cemetery and house site at Stratham, .........Page 34
Fig. 3. An example of some of the display capabilities for 3-D .........Page 35
Fig. 5. Graves identified in 3D QuickDraw with onscreen annotation are exported .........Page 36
Fig. 6. GPR configuration for concrete investigation. The set-up displayed is .........Page 37
Fig. 7. Data were collected at a Cathedral north of Valencia, Spain, .........Page 38
Environmental influences on resistivity mapping for the location of clandestine graves......Page 42
Fig. 2. Resistivity mapping with the pole–pole array.......Page 43
Fig. 4. Resistivity variation caused by a model grave.......Page 44
Fig. 5. Resistivity and thickness of peat maps from a moorland gully.......Page 45
Fig. 6. Resistivity map from the corner of a field in Wales.......Page 46
The importance of stratigraphy in forensic investigation......Page 48
Fig. 1. Arbitrary excavation of graves, (a) Section across grave and natural .........Page 54
Fig. 2. Stratigraphic excavation, (a) Removal of O Horizon leaf litter exposes .........Page 55
Colour theory and the evaluation of an instrumental method of measurement using geological samples for forensic applications......Page 58
Table 1. Geological samples tested for colour......Page 60
Fig. 2. Reflectance curves (400–700nm range) for five subsamples taken from samplet: .........Page 63
Table 7. L*a*b* and Munsell indices (H, V/C) for different size fractions obtained from four samples......Page 66
Table 8. L*a*b* andMunsell indices (H, V/C) for bulk and size fractions .........Page 67
Table 9. L*a*b* and Munsell indices (H, V/C) for four samples tested .........Page 68
Fig. 8. Reflectance curves (400–700 nm range) for samples taken from a .........Page 69
Table 11. L *a*b* and Munsell indices (H, V/C) for samples from a case of eco-vandalism.......Page 70
Table 2. Variation in determined L*a*b* and Munsell indices (H, V/C) measurements .........Page 61
Table 4. Variation in L*a*b* and Munsell indices (H, V/C) measurements .........Page 62
Table 5. Summary of Munsell indices (H, V/C) and descriptions compared with .........Page 64
Table 6. L*a*b* and Munsell indices (H, V/C) for 16 bulk geological samples......Page 65
Fig. 1. The Coulter™ LS230 laser granulometer.......Page 72
Fig. 2. Schematic diagram of the Coulter™ LS230 laser granulometer optical system.......Page 73
Fig. 3. Differential volume plots for 15 repeat runs of: (a) a .........Page 74
Fig. 4. Superimposed differential volume plots for 15 subsamples each of: (a) .........Page 77
Fig. 5. Superimposed differential volume plots showing a close similarity between (a) .........Page 79
Table 5. Particle size summary statistics for mud from the front offside .........Page 80
Table 1. Comparison of variability data for 15 subsamples taken from a .........Page 75
Table 3. Comparison of data for 15 subsamples taken from a parkland .........Page 76
Table 4. Comparison of particle size distribution parameters for beach sands from .........Page 78
Development of a coastal dune sediment database for England and Wales: forensic applications......Page 84
Fig. 1. Location of the major coastal dune systems in England and .........Page 85
Fig. 2. Depth sampling using an auger within the Sefton coastal dune system.......Page 86
Fig.3.Variation in particle size characteristics with depth within the Sefton coastal dune system.......Page 87
Fig. 4. Frequency histograms of: (a) mean particle size, (b) median particle .........Page 88
Fig. 6. Frequency histograms of: (a) mean particle size, (b) median particle .........Page 89
Fig. 7. Frequency histograms of: (a) mean particle size, (b) median particle .........Page 90
Fig. 8. Average SiO[sub(2)] content plotted with one standard deviation for the .........Page 91
Fig. 10. Bivariate plot of the A1[sub(2)]O[sub(3)]/K[sub(2)]O ratio v. the SiO[sub(2)]/Al[sub(2)]O[sub(3)] ratio .........Page 92
Fig. 13. Work glove with traces of decomposition fluids and sand grains trapped in the webbing.......Page 93
Fig. 14. Map of the Lincolnshire coast, showing the location where the .........Page 94
Table 2. Particle size characteristics of dune sediments collected from the Lincolnshire .........Page 95
Fig. 16. Aerial photograph of the coastline between Chapel Six Marshes and .........Page 98
Fig. 17. Particle size distributions of: (a) sand on the suspect glove .........Page 100
Fig. 18. Location map of the Sefton coast, showing the Queen's Silver .........Page 101
Table 5. Particle size characteristics of sand from the suspect dustbin lid, .........Page 102
Fig. 22. Modal particle size plotted against D[sub(90)]—D[sub(10)] range illustrating the coarser .........Page 103
Table 3. Geochemical composition of sand on the suspect's glove and dune .........Page 97
Table 4. Particle size characteristics of dune sediments from Profiles 1–13 between .........Page 99
Table 6. Geochemical composition of sand from the suspect dustbin lid, the .........Page 104
'Unique' particles in soil evidence......Page 106
Fig. 2. Photograph of diagnostic red spherical particles in soil samples from a criminal case.......Page 107
Fig. 5. Photograph of a leaf from a control camphor tree with 'tick holes' (arrows).......Page 108
Table 1. Thicknesses of palisade parenchyma (PAL) and hourglass cells ofhypodermis (HYP) .........Page 109
Forensic examination of rocks, sediments, soils and dusts using scanning electron microscopy and X-ray chemical microanalysis......Page 112
Fig. 2. BSE image of a polished section of concrete, recovered from .........Page 114
Fig. 3. BSE images showing: (a) the internal microstructure of a piece .........Page 115
Fig. 4. Some quartz grain surface textural features and their suggested sedimentary .........Page 117
Fig. 5. Mean and range of the frequencies of 29 surface textural .........Page 118
Fig. 8. BSE image of an angular, elongate quartz grain showing fresh .........Page 119
Fig. 10. Frequency distribution of mean amplitude value for Fourier harmonics 2, 4 .........Page 120
Fig. 12. Mean surface area for the 250-355 µm size fraction of .........Page 121
Fig. 16. BSE image of part of a calcite inoceramid prism, derived .........Page 122
Fig. 18. BSE images showing: (a) Ca- and P-rich particles (white) and .........Page 123
Fig. 22. BSE image of dust sample collected within a contaminated industrial building (uncoated sample).......Page 124
Fig. 23. Frequency histograms showing distribution of: (a) particle sizes, and (b) .........Page 126
Table 2. Size and shape parameters of the three SEM stubs .........Page 125
Rapid quantitative mineral and phase analysis using automated scanning electron microscopy (QemSCAN); potential applications in forensic geoscience......Page 132
Fig. 1. Schematic diagram illustrating the EDS-based mineral analysis system, (a) Systematic .........Page 134
Fig. 2. Automated mineral analysis can be carried out using QemSCAN in .........Page 135
Table 1. Soil samples collected for mineralogical analysis in the Brisbane area......Page 137
Table 2. Soil modal mineralogy data. The modal data are based on the .........Page 138
Fig. 5. Representative QemSCAN images of soil particles. Sample numbers: (a) MSF1, .........Page 139
Fig. 7. Dust modal mineralogy data, (a) Histograms showing the modal abundance .........Page 140
Fig. 8. QemSCAN particle images for grains from: (a) the workshop window .........Page 143
Table 3. Modal mineralogy/phase composition data for the dust samples......Page 141
Mineralogy and microanalysis in the determination of cause of impact damage to spacecraft surfaces......Page 146
Fig. 1. (a) Secondary electron micrograph of a typical interplanetary dust particle .........Page 147
Fig. 2. (a) An optical photograph of one of the solar array .........Page 148
Fig. 3. Secondary electron micrograph of a cross-section made of an individual .........Page 149
Fig. 4. (a) Secondary electron micrograph of an impact crater preserved in .........Page 150
Fig. 5. (a) Energy-dispersive X-ray elemental maps of a patch of extraneous .........Page 152
Fig. 6. (a) Secondary electron micrograph of a typical impact crater preserved .........Page 153
The archaeologist as a detective: scientific techniques and the investigation of past societies......Page 156
Fig. 1. A three-chambered beehived-shaped glass furnace showing: (a) the firebox: (b) .........Page 157
Fig. 2. Relative proportions of magnesium and potassium oxide impurities (wt% oxide) .........Page 158
Fig. 3. Relative proportions of magnesium and aluminium oxide impurities (wt% oxide) .........Page 159
Fig. 4. Relative proportions of calcium oxide and phosphorus pentoxide (wt% oxide) .........Page 161
Fig. 5. Relative proportions of magnesium and potassium oxide impurities (wt% oxide) .........Page 162
Table 2. A range of decorative styles used in Turkish pottery from 1430-c. 1650......Page 163
Fig. 10. A backscattered scanning electron micrograph of a polished section of .........Page 164
Fig. 12. A backscattered scanning electron micrograph through a polished section of .........Page 165
Table 1. The inferred raw materials used for the production of the .........Page 160
Forensic applications of Raman spectroscopy to the non-destructive analysis of biomaterials and their degradation......Page 168
Fig. 1. The Alpine Iceman; a Neolithic ice-mummified body dating from 5.2 ka BP.......Page 170
Fig. 3. Mummified 6-month-old baby girl from the Qilakitsoq burial (Grave I, mummy 1 in Fig. 2).......Page 171
Fig. 4. The earliest recorded forensic scientific investigation of a mummy, Victoria .........Page 172
Fig. 9. FT-RS in the 900–lSOOcm-1 region of the mummified skin of .........Page 174
Fig. 12. FT-RS spectrum of Baltic amber, 1064 nm excitation, 100–3400cm[sup(-1)] range .........Page 175
Fig. 15. FT-RS of partly degraded amber resin, showing the broadening of .........Page 176
Fig. 18. FT-RS stackplot: (a) bone; (b) African elephant ivory and (c) mammoth ivory.......Page 177
Fig. 20. Specimen of mammoth ivory, in which the degradation of the .........Page 178
Fig. 21. The FT-RS of the necklace shown in Fig. 16 confirms .........Page 179
Assessing element variability in small soil samples taken during forensic investigation......Page 180
Fig. 2. Error bars at the lo- level for U and Th .........Page 188
Table 2. ICP-MS detection limits calculated using 10 replicate measurements of .........Page 183
Table 4. Instrument measurement precision (CV) calculated for trace elements by ICP-MS (n =5)......Page 184
Table 5. Preparation precision (CV) calculated for major and trace elements by ICP-AES (n=10)......Page 185
Table 7. Elements which show measurement precision to be greater than preparation precision......Page 186
Table 8. Two-tailed t-test comparing measurement and preparation precision. Values in .........Page 187
Comparison of soils and sediments using major and trace element data......Page 192
Fig. 3. Plot of chondrite-normalized rare earth element concentrations for mud from .........Page 199
Fig. 4. Bivariate plots comparing two samples (KP1 and KP2) in terms .........Page 201
Table 1. Major and trace element data for mud taken from a .........Page 197
Table 2. Selected major oxide and trace element ratios for mud taken .........Page 198
Table 3. Average chemical composition of mud taken from a suspect's boots .........Page 200
Table 4. Pearson's correlation values obtained by comparing mud taken from a .........Page 202
Table 5. Pearson's correlation values obtained by comparing mud taken from a .........Page 203
Table 6. Spearman's rank correlation coefficients obtained by comparing mud from a .........Page 204
Investigating multi-element soil geochemical signatures and their potential for use in forensic studies......Page 206
Fig. 1. The study region showing the location of soil samples collected .........Page 208
Fig. 2. Scheme for the collection of duplicate samples (and separation into .........Page 209
Table 3. Statistics for discriminant analysis based on Mahalanobis distance for soils .........Page 213
Fig. 5. Frequency distributions for Mahalanobis distances for paired soil samples within .........Page 214
Table 1. Statistics of the ratios of total element concentrations in soil .........Page 210
Table 2. Detection limits, lower reporting limits and measurement uncertainties calculated using .........Page 212
Bayesian sediment fingerprinting provides a robust tool for environmental forensic geoscience applications......Page 216
Fig. 2. Effect of source group sampling numbers and source group variability on model performance.......Page 218
Fig. 3. Derived uncertainty bounds from peer-reviewed literature data sources, recalculated using .........Page 219
Table 1. Principal sources of uncertainty within sediment fingerprinting schemes......Page 217
Table 2. Data sets obtained from peer-reviewed literature......Page 221
Isotope and trace element analysis of human teeth and bones for forensic purposes......Page 224
Fig. 1. ε[sub (Nd)](0) values for some example rock and sediment types from .........Page 229
Fig. 2. Plot of [sup(143)Nd/[sup(144)]Nd v. [sup(87)]Sr/[sup(86)]Sr for some example rock and .........Page 230
Table 3. Strontium isotope values for (a) bulk samples and (b) sequential .........Page 232
Fig. 4. Values of (a) [sup(87)]Sr/[sup(86)]Sr ratio, (b) [sup(206)]Pb/[sup(207)]Pb ratio, and (c) .........Page 233
Fig. 5. Plots of (a) [sup(207)]pb/[sup(206)]pb v.[sup(87)]Sr/[sup (86)]Sr, (b) [sup(206)]pb/[sup(204)]pb v. pb .........Page 234
Fig. 6. Plots of (a) [sup(208)]Pb/[sup(204)]Pb v. Pb concentration, (b) [sup(207)]Pb/[sup(206)]Pb v. .........Page 235
Fig. 7. Values of (a) mean δ[sup(18)]O v. SMOW and (b) mean .........Page 236
Fig. 8. Spider plots (log scale) comparing (a) concentrations of selected elements .........Page 239
Table 1. Deciduous and secondary tooth formation and emergence. After Woelfel and Scheid (2002)......Page 225
Table 2. Strontium isotope ratios for the bulk <2 mm fractions of .........Page 231
Defining 'local signature' in terms of Sr isotope composition using a tenth- to twelfth-century Anglo-Saxon population living on a Jurassic clay-carbonate terrain, Rutland, UK......Page 246
Fig. 1. A sketch map of the geology of the Stamford 1:50000 .........Page 248
Fig. 2. A comparison of the [sup(87)]Sr/[sup(86)]Sr isotope composition of soil leachates .........Page 251
Fig. 3. Comparative histograms of [sup(87)]Sr/[sup(86)]Sr isotope composition of samples taken as part of this study.......Page 252
Fig. 4. A comparison of the average and 2a range of [sup(87)]Sr/[sup(86)]Sr .........Page 253
Fig. 6.[sup(87)]Sr/[sup(86)]Sr plotted against the strontium concentration for tooth enamel samples .........Page 255
Table 1. A summary of the advantages and disadvantages of using the .........Page 247
Table 2. [sup (87)]Sr/[sup (86)]Sr isotope ratios of soil leachates and associated plant samples .........Page 249
Table 3. Sr concentrations and [sup (87)]Sr/[sup (86)]Sr isotope ratios of tooth enamel from .........Page 250
Table 5. A comparison of the probability that the animal data from .........Page 254
Forensic geology of bone mineral: geochemical tracers for post-mortem movement of bone remains......Page 258
Fig. 1. Establishing the provenance of fossil bones using chemical signals. The .........Page 260
Fig. 2. REE ratios of bone samples broadly reflect the dominant transport .........Page 261
Table 1. Results of jackknifed discriminant analyses of bones shown in Figure 3 .........Page 262
Fig. 5. Shale normalized REE ratios of bones from Amboseli National Park, .........Page 263
Stable carbon and nitrogen isotope variations in soils: forensic applications......Page 266
Fig. 1. Plan of London, UK, showing the two experimental sites: Tower .........Page 268
Fig. 3. Bushy Park sampling site: (a), March 2001; (b) September 2001 .........Page 269
Fig. 4. §[sup(13)]C values against δ[sup(15)]N values for samples from Tower Hamlets .........Page 272
Table 5. Carbon and nitrogen percentage content and &#[sup (13)]C and [sup (15)]N .........Page 273
Table 6. Carbon and nitrogen percentage content and δ[sup (13)]C and δ[sup (15)]N values ..........Page 274
Table 2. Examples of δ[sup (15)]N ratios found in nature (after Faure 1986; .........Page 267
Table 3. Details of soils sampled and footwear / implements used in the transfer experiments......Page 270
Table 4. Quarterly mean and standard deviation for percentage carbon and nitrogen .........Page 271
The use of plant hydrocarbon signatures in characterizing soil organic matter......Page 278
Fig. 1. Patterns of n-alkane signatures of: (a) Trifolium repens (white clover.........Page 280
Fig. 3. Percentage of pollen grains and or spores by plant species .........Page 281
Table 1. Soil and vegetation types......Page 282
Fig. 5. (a) The n-alkane concentration distribution patterns of corresponding aboveground vegetation .........Page 283
Fig. 6. Gas chromatogram traces from Calluna vulgaris shoots and from the underlying heather moor soil.......Page 284
The use of diatom analysis in forensic geoscience......Page 286
Fig. 1. Scatterplot of diatom assemblages on the first two axes of .........Page 288
The right way and the wrong way of presenting statistical and geological evidence in a court of law (a little knowledge is a dangerous thing!)......Page 290
Fig. 1. Location map showing major geological units present in Mobile and .........Page 291
Fig. 2. X-ray diffractogram of clay mineral fraction (<4µm) from soil sample .........Page 295
Table 3. Heavy mineral content of dtronelle sediments and Terrace deposits and ZTR index......Page 296
Table 1. Comparison of heavy metal analyses from soil samples from defendant with those from the victim (mg kg[sup(-1)]......Page 292
Table 2. Results of Wilcoxon-Mann-Whitney test for median values of .........Page 293
Fig. 1. Accident site on Roberts Road, between State Highway 45 and Celeste Road, Mobile County, Alabama.......Page 298
Fig. 3. Helmet equipped with only one snap on either side, in .........Page 299
Fig. 5. Visor curvature resulting from different attachment times to the helmet.......Page 300
Fig. 7. X-ray diffractograms comparing the new visor with the plaintiff's visor.......Page 301
Fig. 10. Scanning electron microscope image of feldspar Fig. 10. Scanning electron microscope .........Page 302
Fig. 1. Satellite view and map of the crime scene and surrounding region.......Page 304
Table 1. Colour and content of soil samples from the crime scene and the suspect......Page 305
Fig. 5. Brown heavy minerals ranked by abundance in soil from crime scene and from suspect's shoe.......Page 306
Fig. 9. White deposits above light brown river deposits; looking northwest.......Page 307
Fig. 10. View of white deposits from north side of river looking south towards the crime scene.......Page 308
The nature of, and approaches to, teaching forensic geoscience on forensic science and earth science courses......Page 310
Fig 1. Site plan of the landfill and area surrounding 51 Clarke .........Page 316
Fig 2. Stratigraphic log of Loscoe brickpit. After Williams & Aitkenhead 1991, .........Page 317
Fig 4. Geological cross-section through Loscoe landfill, (see Fig. 3 for line .........Page 318
Table 2. Summary of gas analyses from Loscoe. (After Williams & Aitkenhead 1991, .........Page 319
C......Page 322
G......Page 323
L......Page 324
P......Page 325
S......Page 326
Z......Page 327




نظرات کاربران